A necessary and sufficient condition for the convexity in oligopoly games

作者: Jingang Zhao

DOI: 10.1016/S0165-4896(98)00019-5

关键词: EconomicsOligopolyMicroeconomicsMathematical economicsConvexity

摘要: Abstract This paper establishes a necessary and sufficient condition for the convexity (or supermodularity) in oligopoly games.

参考文章(21)
Lloyd S. Shapley, A Value for n-person Games Contributions to the Theory of Games. pp. 307- 317 ,(1952) , 10.1017/CBO9780511528446.003
T. S. H. Driessen, S. H. Tijs, The τ-value, The core and semiconvex games International Journal of Game Theory. ,vol. 14, pp. 229- 247 ,(1985) , 10.1007/BF01769310
Tatsuro Ichiishi, Super-modularity: Applications to convex games and to the greedy algorithm for LP☆ Journal of Economic Theory. ,vol. 25, pp. 283- 286 ,(1981) , 10.1016/0022-0531(81)90007-7
J. Rosenmüller, H.G. Weidner, Extreme convex set functions with finite carrier: General theory Discrete Mathematics. ,vol. 10, pp. 343- 382 ,(1974) , 10.1016/0012-365X(74)90127-7
Elena I�arra, Jos� M. Usategui, The Shapley value and average convex games International Journal of Game Theory. ,vol. 22, pp. 13- 29 ,(1993) , 10.1007/BF01245567
M. Maschler, B. Peleg, L. S. Shapley, The kernel and bargaining set for convex games International Journal of Game Theory. ,vol. 1, pp. 73- 93 ,(1971) , 10.1007/BF01753435
Henri Frédéric Bohnenblust, Kenneth Joseph Arrow, Contributions to the theory of games ,(1950)
Liqun Qi, Odd Submodular Functions, Dilworth Functions and Discrete Convex Functions Mathematics of Operations Research. ,vol. 13, pp. 435- 446 ,(1988) , 10.1287/MOOR.13.3.435
Daniel Granot, Gur Huberman, The Relationship Between Convex Games and Minimum Cost Spanning Tree Games: A Case for Permutationally Convex Games Siam Journal on Algebraic and Discrete Methods. ,vol. 3, pp. 288- 292 ,(1982) , 10.1137/0603029