Effects of Si and C additions on the thermal stability of directionally solidified TiAl–Nb alloys

作者: J.H. Kim , S.W. Kim , H.N. Lee , M.H. Oh , H. Inui

DOI: 10.1016/J.INTERMET.2004.10.010

关键词: Thermal stabilityPhase boundaryComposite materialLamellar structurePhase (matter)MetallurgyAlloyMaterials scienceMicrostructureVolume fractionDirectional solidification

摘要: Abstract The thermal stability of the lamellar microstructure in TiAl–Nb alloys containing Si and C has been investigated by partial melting experiments. proper compositions, where structure is stable enough to be used as a seed material are found for both TiAl–Nb–Si TiAl–Nb–Si–C alloy systems. Ti–44.5Al–3Nb–0.6Si–0.2C Ti–45Al–2Nb–0.6Si–0.2C (at.%) indeed successfully aligned parallel growth direction directional solidification (DS) with from alloy. DS ingots these exhibit good combination room-temperature ductility (8.5%) high-temperature yield strength (700 MPa at 800 °C). composition range, thermally narrower than corresponding range previously TiAl–Mo–Si TiAl–Si alloys. limits such region discussed terms critical volume fraction α (α 2 ) phase Al-rich side limit α-peritectic Al-lean limit. It concluded that Nb not an effective element improve because upon alloying Nb, no significant change expected occur shift α+γ/γ boundary.

参考文章(22)
D.R Johnson, Y Masuda, H Inui, M Yamaguchi, Alignment of the TiAl/Ti3Al lamellar microstructure in TiAl alloys by directional solidification Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 239, pp. 577- 583 ,(1997) , 10.1016/S0921-5093(97)00633-3
H.N. Lee, D.R. Johnson, H. Inui, M.H. Oh, D.M. Wee, M. Yamaguchi, Directional solidification and creep deformation of a Ti–46Al–1.5Mo–0.2C (at.%) alloy Intermetallics. ,vol. 10, pp. 841- 850 ,(2002) , 10.1016/S0966-9795(02)00084-5
Y.H Lu, Y.G Zhang, L.J Qiao, Y.-B Wang, C.Q Chen, W.Y Chu, In-situ TEM study of fracture mechanisms of polysynthetically twinned (PST) crystals of TiAl alloys Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 289, pp. 91- 98 ,(2000) , 10.1016/S0921-5093(00)00903-5
A. K. Singh, D. Banerjee, Transformations in α2+γ titanium aluminide alloys containing molybdenum: Part I. Solidification behavior Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science. ,vol. 28, pp. 1735- 1743 ,(1997) , 10.1007/S11661-997-0105-7
Keizo Hashimoto, Masao Kimura, Youji Mizuhara, Alloy design of gamma titanium aluminides based on phase diagrams Intermetallics. ,vol. 6, pp. 667- 672 ,(1998) , 10.1016/S0966-9795(98)00048-X
M. Yamaguchi, H. Inui, K. Ito, High-temperature structural intermetallics Acta Materialia. ,vol. 48, pp. 307- 322 ,(2000) , 10.1016/S1359-6454(99)00301-8
Young-Won Kim, Effects of microstructure on the deformation and fracture of γ-TiAl alloys Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. pp. 519- 533 ,(1995) , 10.1016/0921-5093(94)03271-8
I.S. Jung, H.S. Jang, M.H. Oh, J.H. Lee, D.M. Wee, Microstructure control of TiAl alloys containing β stabilizers by directional solidification Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 329, pp. 13- 18 ,(2002) , 10.1016/S0921-5093(01)01494-0