ITERATION SCHEME FOR THE SOLUTION OF THE TWO-DIMENSIONAL SCHRODINGER-POISSON EQUATIONS IN QUANTUM STRUCTURES

作者: A. Trellakis , A. T. Galick , A. Pacelli , U. Ravaioli

DOI: 10.1063/1.365396

关键词: Schrödinger's catApplied mathematicsSchrödinger equationConvergence (routing)Quantum wirePerturbation theoryPhysicsIterative methodQuantum mechanicsQuantumNonlinear system

摘要: A fast and robust iterative method for obtaining self-consistent solutions to the coupled system of Schrodinger’s Poisson’s equations is presented. Using quantum mechanical perturbation theory, a simple expression describing dependence electron density on electrostatic potential derived. This then used implement an iteration scheme, based predictor-corrector type approach, solution differential equations. We find that this approach simplifies software implementation nonlinear problem, provides excellent convergence speed stability. demonstrate by presenting example calculation two-dimensional bound states within cross section GaAs-AlGaAs wire. For example, six times faster applying our compared corresponding underrelaxation algorithm.

参考文章(5)
Michele Goano, Algorithm 745: computation of the complete and incomplete Fermi-Dirac integral ACM Transactions on Mathematical Software. ,vol. 21, pp. 221- 232 ,(1995) , 10.1145/210089.210090
Thomas Kerkhoven, Albert T. Galick, Umberto Ravaioli, John H. Arends, Youcef Saad, Efficient numerical simulation of electron states in quantum wires Journal of Applied Physics. ,vol. 68, pp. 3461- 3469 ,(1990) , 10.1063/1.346357
Thomas Kerkhoven, Michael W. Raschke, Umberto Ravaioli, Self-consistent simulation of quantum wires in periodic heterojunction structures Journal of Applied Physics. ,vol. 74, pp. 1199- 1204 ,(1993) , 10.1063/1.354921
H. M. Antia, Rational Function Approximations for Fermi-Dirac Integrals Astrophysical Journal Supplement Series. ,vol. 84, pp. 101- 108 ,(1993) , 10.1086/191748