The structure of the C–C bond hydrolase MhpC provides insights into its catalytic mechanism

作者: G Dunn , MG Montgomery , F Mohammed , A Coker , JB Cooper

DOI: 10.1016/J.JMB.2004.11.033

关键词: EnzymeHydrolaseCarboxylateSerineStereochemistryActive siteCatalytic triadEnolCatalytic cycleChemistry

摘要: 2-Hydroxy-6-ketonona-2,4-diene-1,9-dioic acid 5,6-hydrolase (MhpC) is a 62 kDa homodimeric enzyme of the phenylpropionate degradation pathway Escherichia coli. The 2.1 A resolution X-ray structure native determined from orthorhombic crystals confirms that it member ?/? hydrolase fold family, comprising eight ?-strands interconnected by loops and helices. 2.8 co-crystallised with non-hydrolysable substrate analogue 2,6-diketo-nona-1,9-dioic (DKNDA) location active site in buried channel including Ser110, His263 Asp235, postulated contributors to serine protease-like catalytic triad homologous enzymes. It appears ligand binds two separate orientations. In first, C6 keto group inhibitor forms hemi-ketal adduct Ser110 side-chain, C9 carboxylate interacts, via intermediacy water molecule, Arg188 at one end site, while C1 comes close His114 other end. second orientation, These arrangements implicated or as plausible catalysis initial enol/keto tautomerisation but lack conservation amongst related enzymes mutagenesis results suggest residue involved. Variability quality electron density for molecules crystal asymmetric unit correlate alternative positions side-chain His114. This might arise half-site occupation dimeric reflect apparent dissociation approximately 50% intermediate during cycle.

参考文章(40)
Rolf Apweiler, Amos Marc Bairoch, The SWISS-PROT protein sequence database: its relevance to human molecular medical research. Journal of Molecular Medicine. ,vol. 75, pp. 312- 316 ,(1997)
Zbyszek Otwinowski, Wladek Minor, Processing of X-ray diffraction data collected in oscillation mode Methods in Enzymology. ,vol. 276, pp. 307- 326 ,(1997) , 10.1016/S0076-6879(97)76066-X
G.N. Ramachandran, V. Sasisekharan, Conformation of Polypeptides and Proteins Advances in Protein Chemistry. ,vol. 23, pp. 283- 438 ,(1968) , 10.1016/S0065-3233(08)60402-7
Joseph D. Schrag, Miroslaw Cygler, Lipases and alpha/beta hydrolase fold. Methods in Enzymology. ,vol. 284, pp. 85- 107 ,(1997) , 10.1016/S0076-6879(97)84006-2
Eduardo Díaz, Kenneth N. Timmis, Identification of Functional Residues in a 2-Hydroxymuconic Semialdehyde Hydrolase Journal of Biological Chemistry. ,vol. 270, pp. 6403- 6411 ,(1995) , 10.1074/JBC.270.11.6403
Zygmunt S. Derewenda, Yunyi Wei, Juan Antonio Contreras, Peter Sheffield, Torben Osterlund, Urszula Derewenda, R.E. Kneusel, Ulrich Matern, Cecilia Holm, Crystal Structure of Brefeldin A Esterase, a Bacterial Homolog of the Mammalian Hormone-Sensitive Lipase Nature Structural & Molecular Biology. ,vol. 6, pp. 340- 345 ,(1999) , 10.1038/7576
Narayanasamy Nandhagopal, Akihiro Yamada, Takashi Hatta, Eiji Masai, Masao Fukuda, Yukio Mitsui, Toshiya Senda, Crystal structure of 2-hydroxyl-6-oxo-6-phenylhexa-2,4-dienoic acid (HPDA) hydrolase (BphD enzyme) from the Rhodococcus sp. strain RHA1 of the PCB degradation pathway. Journal of Molecular Biology. ,vol. 309, pp. 1139- 1151 ,(2001) , 10.1006/JMBI.2001.4737
Diana Pokorny, Walter Steiner, Douglas W. Ribbons, β-Ketolases-forgotten hydrolytic enzymes? Trends in Biotechnology. ,vol. 15, pp. 291- 296 ,(1997) , 10.1016/S0167-7799(97)01055-X
Sarah M. Fleming, Thomas A. Robertson, G. John Langley, Timothy D. H. Bugg, Catalytic mechanism of a C−C hydrolase enzyme: Evidence for a Gem-Diol intermediate, not an acyl enzyme Biochemistry. ,vol. 39, pp. 1522- 1531 ,(2000) , 10.1021/BI9923095