Determination of nonradiative surface layer thickness in quantum dots etched from single quantum well GaAs/AlGaAs

作者: E. M. Clausen , H. G. Craighead , J. M. Worlock , J. P. Harbison , L. M. Schiavone

DOI: 10.1063/1.101614

关键词: Etching (microfabrication)Quantum dotChemistryLuminescenceAnalytical chemistryOptoelectronicsSurface layerCathodoluminescenceQuantum wellDiffusion (business)Nanostructure

摘要: Low‐temperature cathodoluminescence spectroscopy was used to investigate the luminescence efficiency of reactive ion etched quantum dots, varying in diameter from 200 μm down 60 nm. The found be degraded both with decreasing nanostructure size and increasing etch depth. A solution standard model for diffusion recombination applied data determine surface velocity S. We that dots smaller than length, becomes insensitive value S fails predict there is a dot which completely extinguished. To understand qualitatively degradation nanostructures we describe damage layer thickness ξ. ξ determines smallest structure will still emit light. show increases depth therefore dependent on etching conditions.

参考文章(12)
W. Hergert, P. Reck, L. Pasemann, J. Schreiber, Cathodoluminescence measurements using the scanning electron microscope for the determination of semiconductor parameters Physica Status Solidi (a). ,vol. 101, pp. 611- 618 ,(1987) , 10.1002/PSSA.2211010237
HF Wong, DL Green, TY Liu, DG Lishan, M Bellis, EL Hu, PM Petroff, PO Holtz, JL Merz, Investigation of reactive ion etching induced damage in GaAs–AlGaAs quantum well structures Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. ,vol. 6, pp. 1906- 1910 ,(1988) , 10.1116/1.584142
L. Jastrzebski, J. Lagowski, H. C. Gatos, Application of scanning electron microscopy to determination of surface recombination velocity: GaAs Applied Physics Letters. ,vol. 27, pp. 537- 539 ,(1975) , 10.1063/1.88276
David B. Wittry, David F. Kyser, Measurement of Diffusion Lengths in Direct‐Gap Semiconductors by Electron‐Beam Excitation Journal of Applied Physics. ,vol. 38, pp. 375- 382 ,(1967) , 10.1063/1.1708984
J. C. Bean, G. E. Becker, P. M. Petroff, T. E. Seidel, Dependence of residual damage on temperature during Ar+ sputter cleaning of silicon Journal of Applied Physics. ,vol. 48, pp. 907- 913 ,(1977) , 10.1063/1.323706
C. J. Sandroff, R. N. Nottenburg, J.‐C. Bischoff, R. Bhat, Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation Applied Physics Letters. ,vol. 51, pp. 33- 35 ,(1987) , 10.1063/1.98877
A. Scherer, Gallium arsenide and aluminum gallium arsenide reactive ion etching in boron trichloride/argon mixtures Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. ,vol. 5, pp. 1599- 1605 ,(1987) , 10.1116/1.583635
P. M. Petroff, A. C. Gossard, R. A. Logan, W. Wiegmann, Toward quantum well wires: Fabrication and optical properties Applied Physics Letters. ,vol. 41, pp. 635- 638 ,(1982) , 10.1063/1.93610
J. Hegarty, L. Goldner, M. D. Sturge, Erratum: Localized and delocalized two-dimensional excitons in GaAs-AlGaAs multiple-quantum-well structures Physical Review B. ,vol. 32, pp. 1354- 1354 ,(1984) , 10.1103/PHYSREVB.30.7346
EM Clausen Jr, HG Craighead, MC Tamargo, JL De Miguel, LM Schiavone, None, Etching and cathodoluminescence studies of ZnSe Applied Physics Letters. ,vol. 53, pp. 690- 691 ,(1988) , 10.1063/1.99852