Imaging developing neural morphology using optical coherence tomography

作者: Stephen A. Boppart , Brett E. Bouma , Mark E. Brezinski , Guillermo J. Tearney , James G. Fujimoto

DOI: 10.1016/S0165-0270(96)00104-5

关键词: Biological specimenOptical coherence tomographyOpticsMicroscopyTomographyLight sourceLaserNeural developmentBiologyPreclinical imaging

摘要: Imaging technologies offer numerous possibilities to investigate the processes involved in neural development. The optical coherence tomography (OCT) technology is analogous ultrasound backscatter microscopy except reflections of light are detected rather than sound. OCT combines high-resolution vivo imaging a diode-based benchtop instrument capable micron-scale resolution transparent and non-transparent biological specimens. In this paper, we examine potential using for investigation developing morphology. To demonstrate capabilities technique assessing development, have chosen image early normal abnormal morphology common developmental biology model, Xenopus laevis. images clearly identify gross subtle differences structure may an alternative costly time-consuming process repeated histological preparation studies. Because can be performed rapidly repeatedly, morphological changes single specimens followed throughout illustrate future technique, state-of-the-art Cr4+:forsterite modelocked laser used as broad bandwidth source individual cells specimen.

参考文章(18)
Ralf Engelhardt, Yingtian Pan, Reginald Birngruber, Jürgen Rosperich, Low-coherence optical tomography in turbid tissue: theoretical analysis Applied Optics. ,vol. 34, pp. 6564- 6574 ,(1995) , 10.1364/AO.34.006564
Russell E. Jacobs, Scott E. Fraser, Imaging neuronal development with magnetic resonance imaging (NMR) microscopy. Journal of Neuroscience Methods. ,vol. 54, pp. 189- 196 ,(1994) , 10.1016/0165-0270(94)90192-9
Stephen A. Stricker, Victoria E. Centonze, Stephen W. Paddock, Gerald Schatten, Confocal microscopy of fertilization-induced calcium dynamics in sea urchin eggs Developmental Biology. ,vol. 149, pp. 370- 380 ,(1992) , 10.1016/0012-1606(92)90292-O
E J Morton, S Webb, J E Bateman, L J Clarke, C G Shelton, Three-dimensional x-ray microtomography for medical and biological applications. Physics in Medicine and Biology. ,vol. 35, pp. 805- 820 ,(1990) , 10.1088/0031-9155/35/7/001
J M Schmitt, A Knuttel, M Yadlowsky, M A Eckhaus, Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering Physics in Medicine and Biology. ,vol. 39, pp. 1705- 1720 ,(1994) , 10.1088/0031-9155/39/10/013
Wolfgang Drexler, Christoph K Hitzenberger, Harald Sattmann, Adolf Friedrich Fercher, Measurement of the thickness of fundus layers by partial coherence tomography Optical Engineering. ,vol. 34, pp. 701- 710 ,(1995) , 10.1117/12.191809
R. Jacobs, S. Fraser, Magnetic resonance microscopy of embryonic cell lineages and movements Science. ,vol. 263, pp. 681- 684 ,(1994) , 10.1126/SCIENCE.7508143
James G. Fujimoto, Mark E. Brezinski, Guillermo J. Tearney, Stephen A. Boppart, Brett Bouma, Michael R. Hee, James F. Southern, Eric A. Swanson, Optical biopsy and imaging using optical coherence tomography. Nature Medicine. ,vol. 1, pp. 970- 972 ,(1995) , 10.1038/NM0995-970
M. Minsky, Memoir on inventing the confocal scanning microscope Scanning. ,vol. 10, pp. 128- 138 ,(1988) , 10.1002/SCA.4950100403