Truncated midkine induces transformation of cultured cells and short latency of tumorigenesis in nude mice

作者: S NOBATA , T SHINOZAWA , A SAKANISHI

DOI: 10.1016/J.CANLET.2004.07.003

关键词: Transformation (genetics)MidkineReverse transcription polymerase chain reactionMolecular biologyIn vivoFetal bovine serumReal-time polymerase chain reactionCarcinogenesisBiologyTransfectionCancer researchOncology

摘要: To test whether truncated midkine (tMK), an alternative spliced form of exon 3, induces the transformation mammalian cells, tMK cDNA was transfected into SW-13 cells. Although, growth MK transfectant (SW-13/MK) cells close to those parent and vector (SW-13/empty) (SW-13/tMK) significantly promoted compared with that above three Both SW-13/tMK SW-13/MK formed colonies in 0.35% soft agar, indicating induce cell transformation. frequently solid tumor after its subcutaneous injection nude mice. Additionally, SW-13/MK-injected mice, advanced visible tumors were detected case SW-13/empty-injected mice as control. These findings indicate promotes establishment vivo.

参考文章(30)
M Tomomura, K Kadomatsu, S Matsubara, T Muramatsu, A retinoic acid-responsive gene, MK, found in the teratocarcinoma system. Heterogeneity of the transcript and the nature of the translation product. Journal of Biological Chemistry. ,vol. 265, pp. 10765- 10770 ,(1990) , 10.1016/S0021-9258(18)87013-2
Sandra Donnini, Rangana Choudhuri, Roy Bicknell, Marina Ziche, Hua-Tang Zhang, An Angiogenic Role for the Neurokines Midkine and Pleiotrophin in Tumorigenesis Cancer Research. ,vol. 57, pp. 1814- 1819 ,(1997)
Sadao Kamidono, Mototsugu Muramaki, Isao Hara, Hideaki Miyake, Introduction of midkine gene into human bladder cancer cells enhances their malignant phenotype but increases their sensitivity to antiangiogenic therapy. Clinical Cancer Research. ,vol. 9, pp. 5152- 5160 ,(2003)
Kazi Mokim Ahmed, Yoshinori Shitara, Seiichi Takenoshita, Hiroyuki Kuwano, Satoshi Saruhashi, Takao Shinozawa, Association of an intronic polymorphism in the midkine (MK) gene with human sporadic colorectal cancer. Cancer Letters. ,vol. 180, pp. 159- 163 ,(2002) , 10.1016/S0304-3835(02)00040-X
Soichi Kojima, Hisako Muramatsu, Hiroshi Amanuma, Takashi Muramatsu, Midkine Enhances Fibrinolytic Activity of Bovine Endothelial Cells Journal of Biological Chemistry. ,vol. 270, pp. 9590- 9596 ,(1995) , 10.1074/JBC.270.16.9590
SHINSUKE KATO, KENJI ISHIHARA, TAKAO SHINOZAWA, HIROYUKI YAMAGUCHI, YOSHIYA ASANO, MASAYA SAITO, MASAKO KATO, TADASHI TERADA, AKIRA AWAYA, ASAO HIRANO, DENNIS W. DICKSON, SHU-HUI YEN, EISAKU OHAMA, Monoclonal Antibody to Human Midkine Reveals Increased Midkine Expression in Human Brain Tumors Journal of Neuropathology and Experimental Neurology. ,vol. 58, pp. 430- 441 ,(1999) , 10.1097/00005072-199905000-00002
Michael Cross, T.Michael Dexter, Growth factors in development, transformation, and tumorigenesis Cell. ,vol. 64, pp. 271- 280 ,(1991) , 10.1016/0092-8674(91)90638-F
Masako Kato, Hiroyuki Maeta, Shinsuke Kato, Takao Shinozawa, Tadashi Terada, Immunohistochemical and in situ hybridization analyses of midkine expression in thyroid papillary carcinoma. Modern Pathology. ,vol. 13, pp. 1060- 1065 ,(2000) , 10.1038/MODPATHOL.3880195
Gerald E. Stoica, Angera Kuo, Ciaran Powers, Emma T. Bowden, Elaine Buchert Sale, Anna T. Riegel, Anton Wellstein, Midkine Binds to Anaplastic Lymphoma Kinase (ALK) and Acts as a Growth Factor for Different Cell Types Journal of Biological Chemistry. ,vol. 277, pp. 35990- 35998 ,(2002) , 10.1074/JBC.M205749200
Robert I. Garver, Diane M. Radford, Helen Donis-Keller, Mark R. Wick, Peter G. Milner, Midkine and pleiotrophin expression in normal and malignant breast tissue Cancer. ,vol. 74, pp. 1584- 1590 ,(1994) , 10.1002/1097-0142(19940901)74:5<1584::AID-CNCR2820740514>3.0.CO;2-V