Effect of Initial Glucose Concentrations on Carbon and Energy Balances in Hydrogen-Producing Clostridium tyrobutyricum JM1

作者: Jong Moon Park , Junhoon Kim , Dae Sung Lee , Ji Hye Jo

DOI: 10.4014/JMB.0802.165

关键词: BiohydrogenClostridium tyrobutyricumHydrogen productionFermentationChemistryMetabolismHydrogenaseBiochemistryFerredoxinStereochemistryClostridia

摘要: 333.6 mM). Because an understandingof metabolic regulations was required to provide guidancefor further effective design or optimization, in thiscase, maximizing hydrogen production, carbon and energybalances by C. tyrobutyricum JM1 were determined andapplied anaerobic glucose metabolism. The overall carbondistribution suggested that initial concentrationshad strong influence on the stoichiometric coefficientsof products molar production of ATP theformation biomass. had a highcapacity for at glucoseconcentration 222.4 mM with high concentrations ofacetate butyrate.Keywords: Clostridium tyrobutyricum, material balance,energy balance, flow distribution, productionSaccharolytic clostridia represent one largest generaof prokaryotes satisfy following four criteria: (a)able form endospores; (b) must rely energymetabolism obligate anaerobes; (c) unable carry out adissimilatory sulfate reduction; (d) cell wall mustbe Gram-positive [2]. ofthe saccharolytic clostridia, is low-G+C Gram-positiveanaerobe exhibits special routes produceshort-chain fatty acids gas from carbohydratesand amino [2, 13]. Hydrogen recognized as arenewable promising energy alternative futurebecause it does not emit carbon-based gases hashigh specific content per unit mass [12]. Amongbiological processes, fermentativehydrogen proceeds anaerobicmetabolism pyruvate electron transferchains: pyruvate:ferredoxin oxidoreductase (PFOR), NADH:ferredoxin (NFOR), hydrogenase [23].PFOR oxidizes acetyl-CoA CO

参考文章(38)
Eun-Hee Seol, Sunghoon Park, Dewey D Y Ryu, Jae-Woong Hwang, Seo Hyoung Kim, You-Kwan Oh, Mi-Sun Kim, Carbon and energy balances of glucose fermentation with hydrogen-producing bacterium Citrobacter amalonaticus Y19 Journal of Microbiology and Biotechnology. ,vol. 18, pp. 532- 538 ,(2008)
Handbook on Clostridia Handbook on Clostridia.. ,(2005) , 10.1201/9780203489819
Debabrata Das, Amit K. Das, Tumpa Dutta, Kaushik Nath, Shireen Meher Kotay, T. Nejat Veziroglu, Role of Fe-hydrogenase in biological hydrogen production Current Science. ,vol. 90, pp. 1627- 1637 ,(2006)
Birgit Dabrock, Hubert Bahl, Gerhard Gottschalk, Parameters Affecting Solvent Production by Clostridium pasteurianum. Applied and Environmental Microbiology. ,vol. 58, pp. 1233- 1239 ,(1992) , 10.1128/AEM.58.4.1233-1239.1992
Jens Nielsen, Gregory N. Stephanopoulos, Aristos A. Aristidou, Metabolic Engineering: Principles and Methodologies ,(1998)
E. Guedon, S. Payot, M. Desvaux, H. Petitdemange, Carbon and Electron Flow in Clostridium cellulolyticum Grown in Chemostat Culture on Synthetic Medium Journal of Bacteriology. ,vol. 181, pp. 3262- 3269 ,(1999) , 10.1128/JB.181.10.3262-3269.1999
Yvain Nicolet, Christine Cavazza, J.C. Fontecilla-Camps, Fe-only hydrogenases: structure, function and evolution. Journal of Inorganic Biochemistry. ,vol. 91, pp. 1- 8 ,(2002) , 10.1016/S0162-0134(02)00392-6
Tong Zhang, Hong Liu, Herbert H.P. Fang, Biohydrogen production from starch in wastewater under thermophilic condition Journal of Environmental Management. ,vol. 69, pp. 149- 156 ,(2003) , 10.1016/S0301-4797(03)00141-5