0.1T magnetic resonance image in the study of experimental hydrocephalus in rats. Accuracy of the method in the measurements of the ventricular size 1 Imagem de ressonância magnética de 1,0T no estudo da hidrocefalia experimental em ratos. Avaliação do método de medição do tamanho ventricular

作者: João-José Lachat , Samuel Caputo de Castro , Betina Aisengart de Siqueira , Ribeirao Preto-SP

DOI:

关键词:

摘要: PURPOSE: To investigate the accuracy of 1.0T Magnetic Resonance Imaging (MRI) to measure ventricular size in experimental hydrocephalus pup rats. METHODS: Wistar rats were subjected by intracisternal injection 20% kaolin (n=13). Ten remained uninjected be used as controls. At endpoint experiment animals submitted MRI brain and killed. The was assessed using three measures: ratio (VR), cortical thickness (Cx) ventricles area (VA), performed on photographs anatomical sections MRI. RESULTS: images obtained through MR present enough quality show lateral cavities but not demonstrate difference between cortex white matter, well details deep structures brain. There no statistically differences measures VR Cx (p=0.9946 p=0.5992, respectively). VA measured (p<0.0001). CONCLUSION: parameters sufficient individualize cerebral cortex, calculate when compared their respective anatomic slice.

参考文章(13)
Paul H. Leliefeld, Rob H. J. M. Gooskens, Cees A. F. Tulleken, Luca Regli, Cuno S. P. M. Uiterwaal, K. Sen Han, L. Jaap Kappelle, Noninvasive detection of the distinction between progressive and compensated hydrocephalus in infants: is it possible? Journal of Neurosurgery. ,vol. 5, pp. 562- 568 ,(2010) , 10.3171/2010.2.PEDS09309
Vikram Jadhav, Takashi Sugawara, John Zhang, Paul Jacobson, Andre Obenaus, Magnetic resonance imaging detects and predicts early brain injury after subarachnoid hemorrhage in a canine experimental model. Journal of Neurotrauma. ,vol. 25, pp. 1099- 1106 ,(2008) , 10.1089/NEU.2008.0518
Luiza da Silva Lopes, Ili Slobodian, Marc R. Del Bigio, Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin. Experimental Neurology. ,vol. 219, pp. 187- 196 ,(2009) , 10.1016/J.EXPNEUROL.2009.05.015
Mare R. Del Bigio, J. Edward Bruni, Silicone oil-induced hydrocephalus in the rabbit. Childs Nervous System. ,vol. 7, pp. 79- 84 ,(1991) , 10.1007/BF00247861
Mariusz Kaczmarek, Ravi P Subramaniam, Samuel R Neff, The hydromechanics of hydrocephalus: Steady-state solutions for cylindrical geometry Bulletin of Mathematical Biology. ,vol. 59, pp. 295- 323 ,(1997) , 10.1016/S0092-8240(96)00073-0
Thomas Tourdias, Iulius Dragonu, Yasutaka Fushimi, Mathilde S.A. Deloire, Claudine Boiziau, Bruno Brochet, Chrit Moonen, Klaus G. Petry, Vincent Dousset, Aquaporin 4 correlates with apparent diffusion coefficient and hydrocephalus severity in the rat brain: a combined MRI-histological study. NeuroImage. ,vol. 47, pp. 659- 666 ,(2009) , 10.1016/J.NEUROIMAGE.2009.04.070
Irene M. Vavasour, Cornelia Laule, David K.B. Li, Anthony L. Traboulsee, Alex L. MacKay, Is the magnetization transfer ratio a marker for myelin in multiple sclerosis Journal of Magnetic Resonance Imaging. ,vol. 33, pp. 710- 718 ,(2011) , 10.1002/JMRI.22441
Paul H. Leliefeld, Rob H. J. M. Gooskens, Koen L. Vincken, Lino M. P. Ramos, Jeroen van der Grond, Cees A. F. Tulleken, L. Jaap Kappelle, Patrick W. Hanlo, Magnetic resonance imaging for quantitative flow measurement in infants with hydrocephalus: a prospective study Journal of Neurosurgery. ,vol. 2, pp. 163- 170 ,(2008) , 10.3171/PED/2008/2/9/163
Helen Ling, Andrew J. Lees, How can neuroimaging help in the diagnosis of movement disorders Neuroimaging Clinics of North America. ,vol. 20, pp. 111- 123 ,(2010) , 10.1016/J.NIC.2009.08.004
Ramin Eskandari, Carolyn A. Harris, James P. McAllister, Reactive astrocytosis in feline neonatal hydrocephalus: acute, chronic, and shunt-induced changes Childs Nervous System. ,vol. 27, pp. 2067- 2076 ,(2011) , 10.1007/S00381-011-1552-4