Learning Robot Manipulation Tasks With Task-Parameterized Semitied Hidden Semi-Markov Model

作者: Ajay Kumar Tanwani , Sylvain Calinon

DOI: 10.1109/LRA.2016.2517825

关键词:

摘要: In this letter, we investigate the semitied Gaussian mixture models for robust learning and adaptation of robot manipulation tasks. We make use spatial temporal correlation in data by tying covariance matrices model with common synergistic directions/basis vectors, instead estimating full each cluster mixture. This allows reuse discovered synergies different parts task having similar coordination patterns. extend approach to task-parameterized hidden semi-Markov autonomous changing environmental situations. The planned movement sequence from is smoothly followed a finite horizon linear quadratic tracking controller. Experiments encode whole body motion simulation, valve opening pick-and-place via obstacle avoidance tasks Baxter robot, show improvement over standard much less parameters better generalization ability.

参考文章(26)
Jeremi Gancet, Diego Urbina, Pierre Letier, Michel Ilzokvitz, Peter Weiss, Frederic Gauch, Gianluca Antonelli, Giovanni Indiveri, Giuseppe Casalino, Andreas Birk, Max Folkert Pfingsthorn, Sylvain Calinon, Ajay Tanwani, Alessio Turetta, Cees Walen, Lisa Guilpain, Dexrov: Dexterous undersea inspection and maintenance in presence of communication latencies IFAC-PapersOnLine. ,vol. 48, pp. 218- 223 ,(2015) , 10.1016/J.IFACOL.2015.06.036
N.K. Goel, R.A. Gopinath, Multiple linear transforms international conference on acoustics, speech, and signal processing. ,vol. 1, pp. 481- 484 ,(2001) , 10.1109/ICASSP.2001.940872
Daniel M. Wolpert, Jörn Diedrichsen, J. Randall Flanagan, Principles of sensorimotor learning. Nature Reviews Neuroscience. ,vol. 12, pp. 739- 751 ,(2011) , 10.1038/NRN3112
Andrea d'Avella, Philippe Saltiel, Emilio Bizzi, Combinations of muscle synergies in the construction of a natural motor behavior Nature Neuroscience. ,vol. 6, pp. 300- 308 ,(2003) , 10.1038/NN1010
E. Elhamifar, R. Vidal, Sparse Subspace Clustering: Algorithm, Theory, and Applications IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 35, pp. 2765- 2781 ,(2013) , 10.1109/TPAMI.2013.57
M.J.F. Gales, Maximum likelihood linear transformations for HMM-based speech recognition Computer Speech & Language. ,vol. 12, pp. 75- 98 ,(1998) , 10.1006/CSLA.1998.0043
Charles Bouveyron, Camille Brunet-Saumard, Model-based clustering of high-dimensional data: A review Computational Statistics & Data Analysis. ,vol. 71, pp. 52- 78 ,(2014) , 10.1016/J.CSDA.2012.12.008
Rui Li, Tai-Peng Tian, Stan Sclaroff, Ming-Hsuan Yang, 3D Human Motion Tracking with a Coordinated Mixture of Factor Analyzers International Journal of Computer Vision. ,vol. 87, pp. 170- 190 ,(2010) , 10.1007/S11263-009-0283-4
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
Sylvain Calinon, Danilo Bruno, Darwin G. Caldwell, A task-parameterized probabilistic model with minimal intervention control international conference on robotics and automation. pp. 3339- 3344 ,(2014) , 10.1109/ICRA.2014.6907339