Fine mapping of the nematode resistance gene Mi-3 in Solanum peruvianum and construction of a S. lycopersicum DNA contig spanning the locus.

作者: J. Yaghoobi , J. L. Yates , V. M. Williamson

DOI: 10.1007/S00438-005-1149-2

关键词:

摘要: Currently, the only genetic resistance against root-knot nematodes in cultivated tomato Solanum lycopersicum (Lycopersicon esculentum) is due to gene Mi-1. Another gene, Mi-3, identified related wild species peruvianum peruvianum) confers that are virulent on lines carry Mi-1, and effective at temperatures which Mi-1 not (above 30°C). Two S. populations segregating for Mi-3 were used develop a high-resolution map of region chromosome 12. BACs carrying flanking markers construct contig spanning region. Markers generated from BAC-end sequences mapped plants recombination events had occurred near Mi-3. Comparison with physical indicated marker order conserved between peruvianum. The 600 kb Mi-3-flanking TG180 NR18 corresponds distance about 7.2 cM We have completely cosegregates as well within 0.25 gene. These can be introduce into tomato, either by conventional breeding or cloning strategies.

参考文章(41)
M. McGiffen, X. Huang, I. Kaloshian, Reproduction of Mi-Virulent Meloidogyne incognita Isolates on Lycopersicon spp. Journal of Nematology. ,vol. 36, pp. 69- 75 ,(2004)
I. J. Thomason, M. Ammati, H. E. McKinney, Retention of Resistance to Meloidogyne incognita in Lycopersicon Genotypes at High Soil Temperature. Journal of Nematology. ,vol. 18, pp. 491- 495 ,(1986)
Pieter Vos†, Guus Simons†, Taco Jesse, Jelle Wijbrandi, Leo Heinen, René Hogers, Adri Frijters, John Groenendijk, Paul Diergaarde, Martin Reijans, Joke Fierens-Onstenk, Michiel de Both, Johan Peleman, Tsvetana Liharska‡, Jan Hontelez, Marc Zabeau§, The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids Nature Biotechnology. ,vol. 16, pp. 1365- 1369 ,(1998) , 10.1038/4350
J. Ammiraju, J. Veremis, X. Huang, P. Roberts, I. Kaloshian, The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theoretical and Applied Genetics. ,vol. 106, pp. 478- 484 ,(2003) , 10.1007/S00122-002-1106-Y
Kevin D Livingstone, Vincent K Lackney, James R Blauth, RIK Van Wijk, Molly Kyle Jahn, None, Genome mapping in capsicum and the evolution of genome structure in the solanaceae. Genetics. ,vol. 152, pp. 1183- 1202 ,(1999) , 10.1093/GENETICS/152.3.1183
Rebecca C. Grube, Molly Jahn, Elaine R. Radwanski, Comparative genetics of disease resistance within the solanaceae. Genetics. ,vol. 155, pp. 873- 887 ,(2000) , 10.1093/GENETICS/155.2.873
Enrique Ritter, Thomas Debener, Amalia Barone, Francesco Salamini, Christiane Gebhardt, RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Molecular Genetics and Genomics. ,vol. 227, pp. 81- 85 ,(1991) , 10.1007/BF00260710
G. Bonnema, D. Schipper, S. van Heusden, P. Lindhout, P. Zabel, TOMATO CHROMOSOME 1 : HIGH RESOLUTION GENETIC AND PHYSICAL MAPPING OF THE SHORT ARM IN AN INTERSPECIFIC LYCOPERSICON ESCULENTUM L. PERUVIANUM CROSS Molecular Genetics and Genomics. ,vol. 253, pp. 455- 462 ,(1997) , 10.1007/S004380050343
Bruce A. Rivers, Robert Bernatzky, Steven J. Robinson, Willi Jahnen-Dechent, Molecular diversity at the self-incompatibility locus is a salient feature in natural populations of wild tomato (Lycopersicon peruvianum) Molecular Genetics and Genomics. ,vol. 238, pp. 419- 427 ,(1993) , 10.1007/BF00292001