Learning to Explore in Motion and Interaction Tasks

作者: Miroslav Bogdanovic , Ludovic Righetti

DOI: 10.1109/IROS40897.2019.8968584

关键词:

摘要: Model free reinforcement learning suffers from the high sampling complexity inherent to robotic manipulation or locomotion tasks. Most successful approaches typically use random …

参考文章(19)
Stefan Schaal, Dynamic Movement Primitives -A Framework for Motor Control in Humans and Humanoid Robotics Adaptive Motion of Animals and Machines. pp. 261- 280 ,(2006) , 10.1007/4-431-31381-8_23
Andrew G. Barto, Satinder Singh, Nuttapong Chentanez, Intrinsically Motivated Learning of Hierarchical Collections of Skills ,(2004)
Sylvain Calinon, Robot Programming by Demonstration ,(2009)
Alex Graves, Generating Sequences With Recurrent Neural Networks arXiv: Neural and Evolutionary Computing. ,(2013)
G. E. Uhlenbeck, L. S. Ornstein, On the Theory of the Brownian Motion Physical Review. ,vol. 36, pp. 823- 841 ,(1930) , 10.1103/PHYSREV.36.823
Sepp Hochreiter, Jürgen Schmidhuber, Long short-term memory Neural Computation. ,vol. 9, pp. 1735- 1780 ,(1997) , 10.1162/NECO.1997.9.8.1735
Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, Stefan Schaal, Dynamical movement primitives: Learning attractor models for motor behaviors Neural Computation. ,vol. 25, pp. 328- 373 ,(2013) , 10.1162/NECO_A_00393
Igor Mordatch, Emanuel Todorov, Zoran Popović, Contact-invariant optimization for hand manipulation symposium on computer animation. pp. 137- 144 ,(2012) , 10.5555/2422356.2422377
Yuval Tassa, Daan Wierstra, Alexander Pritzel, Tom Erez, Jonathan J. Hunt, Nicolas Heess, David Silver, Timothy P. Lillicrap, Continuous control with deep reinforcement learning arXiv: Learning. ,(2015)
Yuval Tassa, Martin A. Riedmiller, Nicolas Heess, Gregory Wayne, David Silver, Timothy P. Lillicrap, Learning and Transfer of Modulated Locomotor Controllers arXiv: Robotics. ,(2016)