An unexpected target of spinal direct current stimulation: Interhemispheric connectivity in humans.

作者: Tommaso Bocci , Matteo Caleo , Beatrice Vannini , Maurizio Vergari , Filippo Cogiamanian

DOI: 10.1016/J.JNEUMETH.2015.07.012

关键词:

摘要: Abstract Background Transcutaneous spinal Direct Current Stimulation (tsDCS) is a noninvasive technique based on the application of weak electrical currents over cord. New method We studied effects tsDCS interhemispheric motor connectivity and visual processing by evaluating changes in ipsilateral Silent Period (iSP), Transcallosal Conduction Time (TCT) hemifield Visual Evoked Potentials (hVEPs), before ( T 0 ) at different intervals following sham, anodal cathodal (T9-T11 level, 2.0 mA, 20′). Motor (MEPs) were recorded from abductor pollicis brevis (APB), hallucis (AH) deltoid muscles. hVEPs bilaterally reversal horizontal square wave grating with display positioned right hemifield. Results Anodal increased TCT p  = 0.0003; P1:  = 0.0005; deltoid: Discussion modulates polarity-specific manner, stimulation leading to functional disconnection between hemispheres. would be new promising therapeutic tool managing number human diseases characterized an impaired balance, or early rehabilitation strategy patients acute brain lesions, when other non-invasive techniques (NIBS) are not indicated due safety concerns.

参考文章(104)
D. L. Voisin, N. Guy, M. Chalus, R. Dallel, Nociceptive stimulation activates locus coeruleus neurones projecting to the somatosensory thalamus in the rat The Journal of Physiology. ,vol. 566, pp. 929- 937 ,(2005) , 10.1113/JPHYSIOL.2005.086520
José Fernando Maya Vetencourt, Ettore Tiraboschi, Maria Spolidoro, Eero Castrén, Lamberto Maffei, Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats European Journal of Neuroscience. ,vol. 33, pp. 49- 57 ,(2011) , 10.1111/J.1460-9568.2010.07488.X
J. Aguilar, F. Pulecchi, R. Dilena, A. Oliviero, A. Priori, G. Foffani, Spinal direct current stimulation modulates the activity of gracile nucleus and primary somatosensory cortex in anaesthetized rats. The Journal of Physiology. ,vol. 589, pp. 4981- 4996 ,(2011) , 10.1113/JPHYSIOL.2011.214189
SC Veasey, CA Fornal, CW Metzler, BL Jacobs, Response of serotonergic caudal raphe neurons in relation to specific motor activities in freely moving cats. The Journal of Neuroscience. ,vol. 15, pp. 5346- 5359 ,(1995) , 10.1523/JNEUROSCI.15-07-05346.1995
H.G.J.M. Kuypers, THE DESCENDING PATHWAYS TO THE SPINAL CORD, THEIR ANATOMY AND FUNCTION. Progress in Brain Research. ,vol. 11, pp. 178- 202 ,(1964) , 10.1016/S0079-6123(08)64048-0
G Foffani, D Humanes-Valera, F Calderon-Muñoz, A Oliviero, J Aguilar, Spinal cord injury immediately decreases anesthetic requirements in rats. Spinal Cord. ,vol. 49, pp. 822- 826 ,(2011) , 10.1038/SC.2011.11
D. Mazevet, E. Pierrot-Deseilligny, J.C. Rothwell, A propriospinal-like contribution to electromyographic responses evoked in wrist extensor muscles by transcranial stimulation of the motor cortex in man Experimental Brain Research. ,vol. 109, pp. 495- 499 ,(1996) , 10.1007/BF00229634
Roger Q. Cracco, Vahe E. Amassian, Paul J. Maccabee, Joan B. Cracco, Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation. Electroencephalography and Clinical Neurophysiology. ,vol. 74, pp. 417- 424 ,(1989) , 10.1016/0168-5597(89)90030-0
D. J. Mikulis, M. T. Jurkiewicz, W. E. McIlroy, W. R. Staines, L. Rickards, S. Kalsi-Ryan, A. P. Crawley, M. G. Fehlings, M. C. Verrier, Adaptation in the motor cortex following cervical spinal cord injury Neurology. ,vol. 58, pp. 794- 801 ,(2002) , 10.1212/WNL.58.5.794
R. Fuentes, P. Petersson, W. B. Siesser, M. G. Caron, M. A. L. Nicolelis, Spinal Cord Stimulation Restores Locomotion in Animal Models of Parkinson’s disease Science. ,vol. 323, pp. 1578- 1582 ,(2009) , 10.1126/SCIENCE.1164901