Hemocompatibility of EpoCore/EpoClad photoresists on COC substrate for optofluidic integrated Bragg sensors

作者: S. Hessler , M. Rüth , C. Sauvant , H.-D. Lemke , B. Schmauss

DOI: 10.1016/J.SNB.2016.08.113

关键词:

摘要: Abstract We report on the hemocompatibility properties of EpoCore/EpoClad UV-structurable epoxy resins in combination with a TOPAS ® cyclic olefin copolymer substrate for potential application as an optofluidic biosensor chip. For comprehensive tests human blood is directly exposed to layers different chip materials up 3 h. Counts white cells, red cells and platelets well hemolysis concentration thrombin/antithrombin complex (TAT), complement fragment (C5a) heparin are determined. Our results attest high properties. Subsequently, fabrication concept integrated Bragg grating sensors suggested. gratings inscribed into rectangular EpoCore waveguides 6017 by coherent phase mask illumination. UV-structured EpoClad resist serves both waveguide cladding microfluidic channel network. In evanescent field refractive index sensing experiments sensitivities 76.9 nm/RIU maximum resolution 1.3·10 −5 achieved detecting multimode reflections.

参考文章(18)
Shaul G. Massry, Wadi N. Suki, Therapy of Renal Diseases and Related Disorders ,(2011)
Tiannan Guan, Frederik Ceyssens, Robert Puers, An EpoClad/EpoCore-based platform for MOEMS fabrication Journal of Micromechanics and Microengineering. ,vol. 23, pp. 125005- ,(2013) , 10.1088/0960-1317/23/12/125005
Andrew W. Browne, Lakshminarayanan Ramasamy, Timothy P. Cripe, Chong H. Ahn, A lab-on-a-chip for rapid blood separation and quantification of hematocrit and serum analytes Lab on a Chip. ,vol. 11, pp. 2440- 2446 ,(2011) , 10.1039/C1LC20144A
P. Aljama, A. Martín-Malo, D. Castillo, F. Velasco, A. Torres, R. Pérez, M. Castro, Anaphylatoxin C5a generation and dialysis-induced leukopenia with different hemodialyzer membranes. Blood Purification. ,vol. 4, pp. 88- 92 ,(1986) , 10.1159/000169431
C M Cripps, Rapid method for the estimation of plasma haemoglobin levels. Journal of Clinical Pathology. ,vol. 21, pp. 110- 112 ,(1968) , 10.1136/JCP.21.1.110
Demetri Psaltis, Stephen R. Quake, Changhuei Yang, Developing optofluidic technology through the fusion of microfluidics and optics Nature. ,vol. 442, pp. 381- 386 ,(2006) , 10.1038/NATURE05060
Valeria Maselli, Jason R. Grenier, Stephen Ho, Peter R. Herman, Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel Optics Express. ,vol. 17, pp. 11719- 11729 ,(2009) , 10.1364/OE.17.011719
Maurine Malak, Irène Philipoussis, Hans Peter Herzig, Toralf Scharf, Polymer based single mode optical waveguide for spectroscopy applications Proceedings of SPIE. ,vol. 8846, pp. 884615- ,(2013) , 10.1117/12.2023678
S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, A. Kristensen, Lab-on-a-chip with integrated optical transducers Lab on a Chip. ,vol. 6, pp. 213- 217 ,(2006) , 10.1039/B512546D
Stefan Haeberle, Roland Zengerle, Microfluidic platforms for lab-on-a-chip applications Lab on a Chip. ,vol. 7, pp. 1094- 1110 ,(2007) , 10.1039/B706364B