Breast cancer outcomes by steroid hormone receptor status assessed visually and by computer image analysis.

作者: Zahra MA Mohammed , Joanne Edwards , Clare Orange , Elizabeth Mallon , Julie C Doughty

DOI: 10.1111/J.1365-2559.2012.04244.X

关键词:

摘要: Mohammed Z M A, Edwards J, Orange C, Mallon E, Doughty J McMillan D C & Going (2012) Histopathology 61, 283–292 Breast cancer outcomes by steroid hormone receptor status assessed visually and computer image analysis Aims:  To compare the assessment of immunohistochemistry eye computer-aided analysis, to examine their relationships with survival in breast cancer. Methods results:  Allred scores weighted histoscores for oestrogen (ER) progesterone (PR) were determined (visual histoscore) 459 primary invasive ductal carcinomas triplicate tissue microarrays. Histoscores also computerized analysis (automated histoscore). ER PR these different methods compared each other ability predict over at least 142 months follow-up. visual histoscore highly associated (both P < 0.001). By univariate score recurrence-free cancer-specific P < 0.001) patients overall, those who received tamoxifen, recurrence on tamoxifen. Visual automated excellent agreement P < 0.001), equally effective predicting tamoxifen. Conclusions:  Automated appears be a valid alternative or determining status.

参考文章(18)
Jennet M. Harvey, Gary M. Clark, C. Kent Osborne, D. Craig Allred, Estrogen Receptor Status by Immunohistochemistry Is Superior to the Ligand-Binding Assay for Predicting Response to Adjuvant Endocrine Therapy in Breast Cancer Journal of Clinical Oncology. ,vol. 17, pp. 1474- 1474 ,(1999) , 10.1200/JCO.1999.17.5.1474
Sumita Gokhale, Daniel Rosen, Nour Sneige, Leslie K. Diaz, Erika Resetkova, Aysegul Sahin, Jinsong Liu, Constance T. Albarracin, Assessment of two automated imaging systems in evaluating estrogen receptor status in breast carcinoma. Applied Immunohistochemistry & Molecular Morphology. ,vol. 15, pp. 451- 455 ,(2007) , 10.1097/PAI.0B013E31802EE998
Dmitry A. Turbin, Samuel Leung, Maggie C. U. Cheang, Hagen A. Kennecke, Kelli D. Montgomery, Steven McKinney, Diana O. Treaba, Niki Boyd, Lynn C. Goldstein, Sunil Badve, Allen M. Gown, Matt van de Rijn, Torsten O. Nielsen, C. Blake Gilks, David G. Huntsman, Automated quantitative analysis of estrogen receptor expression in breast carcinoma does not differ from expert pathologist scoring: a tissue microarray study of 3,484 cases Breast Cancer Research and Treatment. ,vol. 110, pp. 417- 426 ,(2008) , 10.1007/S10549-007-9736-Z
Juha Kononen, Lukas Bubendorf, Anne Kallionimeni, Maarit Bärlund, Peter Schraml, Stephen Leighton, Joachim Torhorst, Michael J Mihatsch, Guido Sauter, Olli-P. Kallionimeni, Tissue microarrays for high-throughput molecular profiling of tumor specimens Nature Medicine. ,vol. 4, pp. 844- 847 ,(1998) , 10.1038/NM0798-844
Kelly L Bolton, Montserrat Garcia-Closas, Ruth M Pfeiffer, Máire A Duggan, William J Howat, Stephen M Hewitt, Xiaohong R Yang, Robert Cornelison, Sarah L Anzick, Paul Meltzer, Sean Davis, Petra Lenz, Jonine D Figueroa, Paul DP Pharoah, Mark E Sherman, None, Assessment of Automated Image Analysis of Breast Cancer Tissue Microarrays for Epidemiologic Studies Cancer Epidemiology, Biomarkers & Prevention. ,vol. 19, pp. 992- 999 ,(2010) , 10.1158/1055-9965.EPI-09-1023
Sian M Tovey, Caroline J Witton, John MS Bartlett, Peter D Stanton, Jonathan R Reeves, Timothy G Cooke, Outcome and Human Epithelial Growth Factor Receptor (HER) 1-4 status in invasive breast carcinomas with proliferation indices evaluated using bromodeoxyuridine (BrdU) labelling Breast Cancer Research. ,vol. 6, pp. 1- 6 ,(2004) , 10.1186/BCR783
Dana Faratian, Charlene Kay, Tammy Robson, Fiona M Campbell, Margaret Grant, Dan Rea, John MS Bartlett, None, Automated image analysis for high-throughput quantitative detection of ER and PR expression levels in large-scale clinical studies: the TEAM Trial Experience. Histopathology. ,vol. 55, pp. 587- 593 ,(2009) , 10.1111/J.1365-2559.2009.03419.X