Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase

作者: K. Vogel , H. Risken

DOI: 10.1103/PHYSREVA.40.2847

关键词:

摘要: It is shown that the probability distribution for rotated quadrature phase [${a}^{\mathrm{\ifmmode^\circ\else\textdegree\fi{}}}$exp(i\ensuremath{\theta})+a exp(-i\ensuremath{\theta})]/2 can be expressed in terms of quasiprobability distributions such as P, Q, and Wigner functions also reverse true, i.e., if known every \ensuremath{\theta} interval 0\ensuremath{\le}\ensuremath{\theta}l\ensuremath{\pi}, then obtained.

参考文章(6)
K. E. Cahill, R. J. Glauber, Density Operators and Quasiprobability Distributions Physical Review. ,vol. 177, pp. 1882- 1902 ,(1969) , 10.1103/PHYSREV.177.1882
Horace P. Yuen, Vincent W. S. Chan, NOISE IN HOMODYNE AND HETERODYNE DETECTION. Optics Letters. ,vol. 8, pp. 177- 179 ,(1983) , 10.1364/OL.8.000177
Bonny L. Schumaker, Noise in homodyne detection. Optics Letters. ,vol. 9, pp. 189- 191 ,(1984) , 10.1364/OL.9.000189
Horace P. Yuen, Two-photon coherent states of the radiation field Physical Review A. ,vol. 13, pp. 2226- 2243 ,(1976) , 10.1103/PHYSREVA.13.2226
D. F. Walls, Squeezed states of light Nature. ,vol. 306, pp. 141- 146 ,(1983) , 10.1038/306141A0