Effect of Isotopes on Low-Temperature Thermal Conductivity

作者: Glen A. Slack

DOI: 10.1103/PHYSREV.105.829

关键词:

摘要: An analysis of the experimental results of the low-temperature thermal conductivity of single crystals of Si, Ge, and KCl indicates that their maximum conductivities are limited by isotope scattering of phonons rather than by umklapp processes. The isotope scattering in solid helium and sapphire is sufficiently low so that nearly pure umklapp scattering can be observed. The measured thermal conductivities of Si O 2, KBr, and diamond appear to still be limited by impurities. However, even in pure crystals of these three materials the isotope …

参考文章(8)
R. Peierls, Zur kinetischen Theorie der Wärmeleitung in Kristallen Annalen der Physik. ,vol. 395, pp. 1055- 1101 ,(1929) , 10.1002/ANDP.19293950803
P G Klemens, The Scattering of Low-Frequency Lattice Waves by Static Imperfections Proceedings of the Physical Society. Section A. ,vol. 68, pp. 1113- 1128 ,(1955) , 10.1088/0370-1298/68/12/303
J. WILKS, R. BERMAN, F. E. SIMON, Thermal Conductivity of Dielectric Crystals: The ‘Umklapp’ Process Nature. ,vol. 168, pp. 277- 280 ,(1951) , 10.1038/168277A0
PG Klemens, The Lattice Component of the Thermal Conductivity of Metals and Alloys Australian Journal of Physics. ,vol. 7, pp. 57- 63 ,(1954) , 10.1071/PH540057
The thermal conductivity of dielectric solids at low temperatures (Theoretical) Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 208, pp. 108- 133 ,(1951) , 10.1098/RSPA.1951.0147
Glen A. Slack, Thermal Conductivity of Potassium Chloride Crystals Containing Calcium Physical Review. ,vol. 105, pp. 832- 842 ,(1957) , 10.1103/PHYSREV.105.832
W.J. De Haas, Th. Biermasz, The thermal conductivity of KBr, KCl and SiO2 at low temperatures Physica D: Nonlinear Phenomena. ,vol. 4, pp. 752- 756 ,(1937) , 10.1016/S0031-8914(37)80176-7
G. K. White, S. B. Woods, Thermal Conductivity of Germanium and Silicon at Low Temperatures Physical Review. ,vol. 103, pp. 569- 571 ,(1956) , 10.1103/PHYSREV.103.569