One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms.

作者: Jing Chen , Gaowu Qin , Jiansheng Wang , Jiangyu Yu , Bo Shen

DOI: 10.1016/J.BIOS.2013.01.038

关键词:

摘要: Abstract Nanoscale gaps in noble metal films can produce intense electromagnetic enhancement. When Raman-active molecules are positioned these regions, their surface-enhanced Raman scattering (SERS) signals be dramatically enhanced. However, the lack of convenient and reliable fabrication methods with ultrasmall nanogaps ( 3 times compared to continuous Ag film a smooth surface (the roughness is 0.5 nm) without nanogaps. Since there no chemicals used during fabrication, this substrate has clean surface, which crucial for acquiring SERS spectra. This SERS-active then been applied identify series microorganisms, excellent, reproducible spectra were obtained. Finally, set piecewise-linear equations provided according correlation between intensity rhodamine 6G (R6G) concentration, detection limit calculated 0.2×10 −8  M. These results suggest that high pressure sputtering an technique fabricating sub-10-nm plasmonic nanogaps, SERS-based methodology very promising being biological sensing field.

参考文章(39)
Roger M. Jarvis, Alan Brooker, Royston Goodacre, Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. Analytical Chemistry. ,vol. 76, pp. 5198- 5202 ,(2004) , 10.1021/AC049663F
Yuling Wang, Kyuwan Lee, Joseph Irudayaraj, Silver Nanosphere SERS Probes for Sensitive Identification of Pathogens Journal of Physical Chemistry C. ,vol. 114, pp. 16122- 16128 ,(2010) , 10.1021/JP1015406
L. Zeiri, B. V. Bronk, Y. Shabtai, J. Eichler, S. Efrima, Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria. Applied Spectroscopy. ,vol. 58, pp. 33- 40 ,(2004) , 10.1366/000370204322729441
Xiaoyu Zhang, Jing Zhao, Alyson V. Whitney, Jeffrey W. Elam, Richard P. Van Duyne, Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. Journal of the American Chemical Society. ,vol. 128, pp. 10304- 10309 ,(2006) , 10.1021/JA0638760
M. S. Klempner, N. Krieger, G. Jones, L. D. Ziegler, W. R. Premasiri, D. T. Moir, Characterization of the surface enhanced raman scattering (SERS) of bacteria. Journal of Physical Chemistry B. ,vol. 109, pp. 312- 320 ,(2005) , 10.1021/JP040442N
Rebecca S. Golightly, William E. Doering, Michael J. Natan, Surface-enhanced Raman spectroscopy and homeland security: a perfect match? ACS Nano. ,vol. 3, pp. 2859- 2869 ,(2009) , 10.1021/NN9013593
Jesse Theiss, Prathamesh Pavaskar, Pierre M Echternach, Richard E Muller, Stephen B Cronin, None, Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. Nano Letters. ,vol. 10, pp. 2749- 2754 ,(2010) , 10.1021/NL904170G
Katrin Kneipp, Yang Wang, Harald Kneipp, Lev T. Perelman, Irving Itzkan, Ramachandra R. Dasari, Michael S. Feld, Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) Physical Review Letters. ,vol. 78, pp. 1667- 1670 ,(1997) , 10.1103/PHYSREVLETT.78.1667
Qiuming Yu, Phillip Guan, Dong Qin, Greg Golden, Paul M. Wallace, Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays Nano Letters. ,vol. 8, pp. 1923- 1928 ,(2008) , 10.1021/NL0806163