Biogenesis and functions of aminocarboxypropyluridine in tRNA.

作者: Mayuko Takakura , Kensuke Ishiguro , Shinichiro Akichika , Kenjyo Miyauchi , Tsutomu Suzuki

DOI: 10.1038/S41467-019-13525-3

关键词:

摘要: Transfer (t)RNAs contain a wide variety of post-transcriptional modifications, which play critical roles in tRNA stability and functions. 3-(3-amino-3-carboxypropyl)uridine (acp3U) is highly conserved modification found variable- D-loops tRNAs. Biogenesis functions acp3U have not been extensively investigated. Using reverse-genetic approach supported by comparative genomics, we find here that the Escherichia coli yfiP gene, rename tapT (tRNA aminocarboxypropyltransferase), responsible for formation tRNA. Recombinant TapT synthesizes at position 47 tRNAs presence S-adenosylmethionine. Biochemical experiments reveal acp3U47 confers thermal on Curiously, ΔtapT strain exhibits genome instability under continuous heat stress. We also human homologs tapT, DTWD1 DTWD2, are positions 20 20a tRNAs, respectively. Double knockout cells DTWD2 exhibit growth retardation, indicating physiologically important mammals.

参考文章(93)
Neena K. Pyzocha, F. Ann Ran, Patrick D. Hsu, Feng Zhang, RNA-Guided Genome Editing of Mammalian Cells Methods in Molecular Biology. ,vol. 1114, pp. 269- 277 ,(2014) , 10.1007/978-1-62703-761-7_17
Jue Chu, Lifeng Feng, Vivian Y Shin, Yongfang Yue, Hongchuan Jin, Min Pan, Xian Wang, Wenxia Xu, Yanning Ma, Xiaoying Lin, Yan Chen, Jie Sun, Dingwei Chen, Histone deacetylase 3 inhibits new tumor suppressor gene DTWD1 in gastric cancer American Journal of Cancer Research. ,vol. 5, pp. 663- 673 ,(2015)
Yuriko Sakaguchi, Kenjyo Miyauchi, Byeong-il Kang, Tsutomu Suzuki, Nucleoside Analysis by Hydrophilic Interaction Liquid Chromatography Coupled with Mass Spectrometry. Methods in Enzymology. ,vol. 560, pp. 19- 28 ,(2015) , 10.1016/BS.MIE.2015.03.015
Jesper S. Krog, Yaiza Español, Anders M. B. Giessing, Agnieszka Dziergowska, Andrzej Malkiewicz, Lluís Ribas de Pouplana, Finn Kirpekar, 3-(3-amino-3-carboxypropyl)-5,6-dihydrouridine is one of two novel post-transcriptional modifications in tRNALys(UUU) from Trypanosoma brucei. FEBS Journal. ,vol. 278, pp. 4782- 4796 ,(2011) , 10.1111/J.1742-4658.2011.08379.X
Tsutomu Suzuki, Yoshiho Ikeuchi, Akiko Noma, Takeo Suzuki, Yuriko Sakaguchi, Mass spectrometric identification and characterization of RNA-modifying enzymes. Methods in Enzymology. ,vol. 425, pp. 211- 229 ,(2007) , 10.1016/S0076-6879(07)25009-8
Patricia L. Foster, Methods for Determining Spontaneous Mutation Rates DNA Repair, Part B. ,vol. 409, pp. 195- 213 ,(2006) , 10.1016/S0076-6879(05)09012-9
S Friedman, The effect of chemical modification of 3-(3-amino-3-carboxypropyl)uridine on tRNA function. Journal of Biological Chemistry. ,vol. 254, pp. 7111- 7115 ,(1979) , 10.1016/S0021-9258(18)50291-X
J.M. Gregson, P.F. Crain, C.G. Edmonds, R. Gupta, T. Hashizume, D.W. Phillipson, J.A. McCloskey, Structure of the archaeal transfer RNA nucleoside G*-15 (2-amino-4,7-dihydro- 4-oxo-7-beta-D-ribofuranosyl-1H-pyrrolo[2,3-d]pyrimidine-5-carboximi dam ide (archaeosine)). Journal of Biological Chemistry. ,vol. 268, pp. 10076- 10086 ,(1993) , 10.1016/S0021-9258(18)82174-3
Sergey Ovchinnikov, Lisa Kinch, Hahnbeom Park, Yuxing Liao, Jimin Pei, David E Kim, Hetunandan Kamisetty, Nick V Grishin, David Baker, Large-scale determination of previously unsolved protein structures using evolutionary information eLife. ,vol. 4, ,(2015) , 10.7554/ELIFE.09248