The knots in D2 × S1 which have nontrivial Dehn surgeries that yield D2 × S1

作者: John Berge

DOI: 10.1016/0166-8641(91)90037-M

关键词:

摘要: Abstract A complete classification of the nontrivial knots in D2 × S1 which have Dehn surgeries yielding is given, together with surgery or on each such knot that produce S1.

参考文章(7)
Louise Moser, Elementary surgery along a torus knot. Pacific Journal of Mathematics. ,vol. 38, pp. 737- 745 ,(1971) , 10.2140/PJM.1971.38.737
R. P. Osborne, R. S. Stevens, Group presentations corresponding to spines of 3-manifolds. III Transactions of the American Mathematical Society. ,vol. 234, pp. 213- 243 ,(1977) , 10.1090/S0002-9947-1977-0488062-9
Ronald Fintushel, Ronald J. Stern, Constructing Lens Spaces by Surgery on Knots. Mathematische Zeitschrift. ,vol. 175, pp. 33- 51 ,(1980) , 10.1007/BF01161380
David Gabai, Surgery on knots in solid tori Topology. ,vol. 28, pp. 1- 6 ,(1989) , 10.1016/0040-9383(89)90028-1
David Gabai, 1-bridge braids in solid tori Topology and its Applications. ,vol. 37, pp. 221- 235 ,(1990) , 10.1016/0166-8641(90)90021-S
M. Cohen, W. Metzler, A. Zimmermann, What Does a Basis of F(a, b) Look Like? Mathematische Annalen. ,vol. 257, pp. 435- 445 ,(1981) , 10.1007/BF01465865
Marc Culler, C. McA. Gordon, J. Luecke, Peter B. Shalen, Dehn surgery on knots Annals of Mathematics. ,vol. 125, pp. 237- 300 ,(1987) , 10.2307/1971311