Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO3 (La(1−x)ZnxFeO3, x=0.10, and 0.30)

作者: K. Mukhopadhyay , A.S. Mahapatra , P.K. Chakrabarti

DOI: 10.1016/J.JMMM.2012.09.063

关键词:

摘要: Abstract Nanocrystalline Zn-substituted lanthanum orthoferrite La (1− x ) Zn FeO 3 ( =0.1 and 0.3) (LZFO1 for LZFO2 = was prepared by a chemical co-precipitation method. The as-prepared samples were annealed at 500 °C 12 h. formation of the pure crystallographic phase LaFeO (LFO) substitution 2+ in doped confirmed X-ray diffractograms. Magnetization curves hysteresis loops range 300–2 K showed that magnetization considerably enhanced compared to pristine LFO. maximum enhancement factor ∼2.5 saturation measured room temperature found LZFO2. Interestingly, an exchange bias effect observed nanoparticles LFO LZFOs, which suggest antiferromagnetic–ferromagnetic (AFM–FM) core-shell structure AFM LZFOs. hysteretic behavior polarization–electric field recorded indicates onset ferroelectric ordering samples. dielectric constant presence absence magnetic are type-II multiferroics with positive magneto-coupling effect.

参考文章(57)
G. R. Hearne, M. P. Pasternak, R. D. Taylor, P. Lacorre, Electronic structure and magnetic properties of LaFeO3 at high pressure. Physical Review B. ,vol. 51, pp. 11495- 11500 ,(1995) , 10.1103/PHYSREVB.51.11495
Sung June Cho, Kwang Sup Song, In Soo Ryu, Yong Seog Seo, Min Woong Ryoo, Sung Kyu Kang, Characteristics of methane combustion over La-Cr-O catalysts Catalysis Letters. ,vol. 58, pp. 63- 66 ,(1999) , 10.1023/A:1019092809562
Anupinder Singh, Ratnamala Chatterjee, Magnetization induced dielectric anomaly in multiferroic LaFeO3–PbTiO3 solid solution Applied Physics Letters. ,vol. 93, pp. 182908- ,(2008) , 10.1063/1.3012389
Hossein Ahmadvand, Hadi Salamati, Parviz Kameli, Asok Poddar, Mehmet Acet, Khalil Zakeri, Exchange bias in LaFeO3 nanoparticles Journal of Physics D. ,vol. 43, pp. 245002- ,(2010) , 10.1088/0022-3727/43/24/245002
S. Modak, S. Karan, S. K. Roy, P. K. Chakrabarti, Static and dynamic magnetic behavior of nanocrystalline and nanocomposites of (Mn0.6Zn0.4Fe2O4)(1−z)(SiO2)z (z=0.0,0.10,0.15,0.25) Journal of Applied Physics. ,vol. 108, pp. 093912- ,(2010) , 10.1063/1.3499644
Brian C. H. Steele, Angelika Heinzel, Materials for fuel-cell technologies Nature. ,vol. 414, pp. 345- 352 ,(2001) , 10.1038/35104620
T. Zhang, G. Li, T. Qian, J. F. Qu, X. Q. Xiang, X. G. Li, Effect of particle size on the structure and magnetic properties of La0.6Pb0.4MnO3 nanoparticles Journal of Applied Physics. ,vol. 100, pp. 094324- ,(2006) , 10.1063/1.2364622
D. Niebieskikwiat, M. B. Salamon, Intrinsic interface exchange coupling of ferromagnetic nanodomains in a charge ordered manganite Physical Review B. ,vol. 72, pp. 174422- ,(2005) , 10.1103/PHYSREVB.72.174422
G. Karlsson, Perovskite catalysts for air electrodes Electrochimica Acta. ,vol. 30, pp. 1555- 1561 ,(1985) , 10.1016/0013-4686(85)80019-0
J.-M. Liu, Q. C. Li, X. S. Gao, Y. Yang, X. H. Zhou, X. Y. Chen, Z. G. Liu, Order coupling in ferroelectromagnets as simulated by a Monte Carlo method Physical Review B. ,vol. 66, pp. 054416- ,(2002) , 10.1103/PHYSREVB.66.054416