Structural features of mouse telomerase RNA are responsible for the lower activity of mouse telomerase versus human telomerase.

作者: Scott J. Garforth , Yan Yun Wu , Vinayaka R. Prasad

DOI: 10.1042/BJ20060456

关键词:

摘要: Human and mouse telomerases show a high degree of similarity in both the protein RNA components. telomerase is more active processive than telomerase. There are two key differences between hTR [human TR (telomerase RNA)] mTR (mouse TR) structures. First, contains only 2 nt upstream its template region, whereas human 45 nt. Secondly, region 5-nt alignment domain, that has We hypothesize these responsible for differential activities. Mutations were made mTR, changing length template, was reconstituted vitro using reverse transcriptase generated by translation. sequences with potential to form double-stranded helix (the P1 helix) as hTR, increase activity. The longer domain increases activity context helix. Thus contributes regulating level mammalian telomerases.

参考文章(39)
Paul L. Boyer, Stephen H. Hughes, Site-directed mutagenic analysis of viral polymerases and related proteins. Methods in Enzymology. ,vol. 275, pp. 538- 555 ,(1996) , 10.1016/S0076-6879(96)75030-9
Valerie M. Tesmer, Lance P. Ford, Shawn E. Holt, Bryan C. Frank, Xiaoming Yi, Dara L. Aisner, Michel Ouellette, Jerry W. Shay, Woodring E. Wright, Two inactive fragments of the integral RNA cooperate to assemble active telomerase with the human protein catalytic subunit (hTERT) in vitro. Molecular and Cellular Biology. ,vol. 19, pp. 6207- 6216 ,(1999) , 10.1128/MCB.19.9.6207
Scott L. Weinrich, Ron Pruzan, Libin Ma, Michel Ouellette, Valeric M. Tesmer, Shawn E. Holt, Andrea G. Bodnar, Serge Lichtsteiner, Nam W. Kim, James B. Trager, Rebecca D. Taylor, Ruben Carlos, William H. Andrews, Woodring E. Wright, Jerry W. Shay, Calvin B. Harley, Gregg B. Morin, Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT Nature Genetics. ,vol. 17, pp. 498- 502 ,(1997) , 10.1038/NG1297-498
Cary K. Lai, Michael C. Miller, Kathleen Collins, Roles for RNA in Telomerase Nucleotide and Repeat Addition Processivity Molecular Cell. ,vol. 11, pp. 1673- 1683 ,(2003) , 10.1016/S1097-2765(03)00232-6
Jiunn-Liang Chen, Carol W Greider, Template boundary definition in mammalian telomerase Genes & Development. ,vol. 17, pp. 2747- 2752 ,(2003) , 10.1101/GAD.1140303
François Bachand, Ibtissem Triki, Chantal Autexier, Human telomerase RNA–protein interactions Nucleic Acids Research. ,vol. 29, pp. 3385- 3393 ,(2001) , 10.1093/NAR/29.16.3385
Hinh Ly, Elizabeth H. Blackburn, Tristram G. Parslow, Comprehensive structure-function analysis of the core domain of human telomerase RNA. Molecular and Cellular Biology. ,vol. 23, pp. 6849- 6856 ,(2003) , 10.1128/MCB.23.19.6849-6856.2003
Gérald Gavory, Mark Farrow, Shankar Balasubramanian, Minimum length requirement of the alignment domain of human telomerase RNA to sustain catalytic activity in vitro. Nucleic Acids Research. ,vol. 30, pp. 4470- 4480 ,(2002) , 10.1093/NAR/GKF575
K. R. Prowse, A. A. Avilion, C. W. Greider, Identification of a nonprocessive telomerase activity from mouse cells. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 90, pp. 1493- 1497 ,(1993) , 10.1073/PNAS.90.4.1493
J. Lin, H. Ly, A. Hussain, M. Abraham, S. Pearl, Y. Tzfati, T. G. Parslow, E. H. Blackburn, A universal telomerase RNA core structure includes structured motifs required for binding the telomerase reverse transcriptase protein Proceedings of the National Academy of Sciences of the United States of America. ,vol. 101, pp. 14713- 14718 ,(2004) , 10.1073/PNAS.0405879101