On the minimizers of the Ginzburg-Landau energy for high kappa : the axially symmetric case

作者: Amandine Aftalion

DOI: 10.1016/S0294-1449(00)88186-X

关键词:

摘要: Abstract The Ginzburg-Landau theory of superconductivity is examined in the case a special geometry sample, infinite cylinder. We restrict to axially symmetric solutions and consider models with without vortices. First putting parameter κ formally equal infinity, existence minimizer this reduced energy proved. Then asymptotic behaviour for large minimizers full analyzed different convergence results are obtained. Our main result states that, when large, minimum reached there about vortices at center Numerical computations illustrate various behaviours.

参考文章(16)
Haïm Brezis, Tatsien Li, Ginzburg-Landau Vortices ,(1994)
Hans G. Kaper, Man Kam Kwong, Uniqueness of non-negative solutions of a class of semi-linear elliptic equations Springer, New York, NY. pp. 1- 17 ,(1988) , 10.1007/978-1-4613-9608-6_1
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
P. Bauman, D. Phillips, Q. Tang, Stable Nucleation for the Ginzburg-Landau System with an Applied Magnetic Field Archive for Rational Mechanics and Analysis. ,vol. 142, pp. 1- 43 ,(1998) , 10.1007/S002050050082
Qiang Du, Max D. Gunzburger, Janet S. Peterson, Analysis and Approximation of the Ginzburg–Landau Model of Superconductivity SIAM Review. ,vol. 34, pp. 54- 81 ,(1992) , 10.1137/1034003
S. Jonathan Chapman, G. Richardson, Motion of Vortices in Type II Superconductors SIAM Journal on Applied Mathematics. ,vol. 55, pp. 1275- 1296 ,(1995) , 10.1137/S0036139994263872
S. Jonathan Chapman, A Mean-Field Model of Superconducting Vortices in Three Dimensions SIAM Journal on Applied Mathematics. ,vol. 55, pp. 1259- 1274 ,(1995) , 10.1137/S0036139994263665
Y. Y. Chen, Nonsymmetric vortices for the Ginzberg–Landau equations on the bounded domain Journal of Mathematical Physics. ,vol. 30, pp. 1942- 1950 ,(1989) , 10.1063/1.528230
C. M. Elliott, H. Matano, Tang Qi, Zeros of a complex Ginzburg–Landau order parameter with applications to superconductivity European Journal of Applied Mathematics. ,vol. 5, pp. 431- 448 ,(1994) , 10.1017/S0956792500001558