An extraction technique for small signal intrinsic parameters of HEMTs based on artificial neural networks

作者: M. Hayati , B. Akhlaghi

DOI: 10.1016/J.AEUE.2012.07.012

关键词:

摘要: Abstract This paper presents a fast and accurate procedure for extraction of small signal intrinsic parameters AlGaAs/GaAs high electron mobility transistors (HEMTs) using artificial neural network (ANN) techniques. The has been done in wide range frequencies biases at various temperatures. Intrinsic HEMT are acquired its values common-source S-parameters. Two different ANN structures have constructed this work to extract the parameters, multi layer perceptron (MLP) radial basis function (RBF) networks. These two kinds ANNs compared each other terms accuracy, speed memory usage. To validate capability proposed method modeling GaAs HEMTs, data modeled S-parameters 200 μm gate width 0.25 μm very good agreement between them is achieved up 30 GHz. effect bias, temperature frequency conditions on extracted investigated, obtained results match theoretical expectations. model can be inserted computer-aided design (CAD) tools order an design, simulation optimization microwave circuits including HEMTs.

参考文章(29)
Peter R. Karlsson, Kjell O. Jeppson, Direct extraction of MOS transistor model parameters Analog Integrated Circuits and Signal Processing. ,vol. 5, pp. 199- 212 ,(1994) , 10.1007/BF01261412
Massimo Claudio Comparini, Marziale Feudale, Andrea Suriani, Applications of HEMT devices in space communication systems and equipment: a European perspective Solid-State Electronics. ,vol. 43, pp. 1577- 1589 ,(1999) , 10.1016/S0038-1101(99)00106-9
Andrei Grebennikov, RF and Microwave Power Amplifier Design ,(2004)
A. Caddemi, G. Crupi, N. Donato, Temperature effects on DC and small signal RF performance of AlGaAs/GaAs HEMTs Microelectronics Reliability. ,vol. 46, pp. 169- 173 ,(2006) , 10.1016/J.MICROREL.2005.05.003
Jing Lu, Yan Wang, Long Ma, Zhiping Yu, None, A new small-signal modeling and extraction method in AlGaN/GaN HEMTs Solid-state Electronics. ,vol. 52, pp. 115- 120 ,(2008) , 10.1016/J.SSE.2007.07.009
A. Oudir, M. Mahdouani, R. Bourguiga, F. Pardo, J.L. Pelouard, An analytic procedure for extraction of metallic collector-up InP/InGaAsP/InGaAs HBT small signal equivalent circuit parameters Solid-state Electronics. ,vol. 52, pp. 1742- 1750 ,(2008) , 10.1016/J.SSE.2008.07.004
Qi-Jun Zhang, K.C. Gupta, V.K. Devabhaktuni, Artificial neural networks for RF and microwave design - from theory to practice IEEE Transactions on Microwave Theory and Techniques. ,vol. 51, pp. 1339- 1350 ,(2003) , 10.1109/TMTT.2003.809179
K. Shirakawa, M. Shimizu, N. Okubo, Y. Daido, Structural determination of multilayered large-signal neural-network HEMT model IEEE Transactions on Microwave Theory and Techniques. ,vol. 46, pp. 1367- 1375 ,(1998) , 10.1109/22.721137
S. Arnari, P. Harscher, E. Ofli, R. Vahldieck, EM-simulator based parameter extraction and optimization technique for microwave and millimeter wave filters international microwave symposium. ,vol. 2, pp. 1113- 1116 ,(2002) , 10.1109/MWSYM.2002.1011842