A Survey on Filter Techniques for Feature Selection in Gene Expression Microarray Analysis

作者: C. Lazar , J. Taminau , S. Meganck , D. Steenhoff , A. Coletta

DOI: 10.1109/TCBB.2012.33

关键词:

摘要: … top ranked features/genes which are statistically significant as the most informative features/ … selecting the top ranked features/genes only as opposed to the top ranked significant ones). …

参考文章(66)
Sung-Hyuk Cha, Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions International Journal of Mathematical Models and Methods in Applied Sciences. ,vol. 1, ,(2007)
Artur Wilinski, Stanislaw Osowski, Krzysztof Siwek, Gene selection for cancer classification through ensemble of methods international conference on adaptive and natural computing algorithms. pp. 507- 516 ,(2009) , 10.1007/978-3-642-04921-7_52
Eric P. Xing, Richard M. Karp, Michael I. Jordan, Feature selection for high-dimensional genomic microarray data international conference on machine learning. pp. 601- 608 ,(2001)
Sandrine Dudoit, Juliet Popper Shaffer, Jennifer C. Block, Multiple Hypothesis Testing in Microarray Experiments Statistical Science. ,vol. 18, pp. 71- 103 ,(2003) , 10.1214/SS/1056397487
Sandrine Dudoit, Jane Fridlyand, Terence P Speed, None, Comparison of discrimination methods for the classification of tumors using gene expression data Journal of the American Statistical Association. ,vol. 97, pp. 77- 87 ,(2002) , 10.1198/016214502753479248
Yu Wang, Igor V Tetko, Mark A Hall, Eibe Frank, Axel Facius, Klaus FX Mayer, Hans W Mewes, None, Gene selection from microarray data for cancer classification-a machine learning approach Computational Biology and Chemistry. ,vol. 29, pp. 37- 46 ,(2005) , 10.1016/J.COMPBIOLCHEM.2004.11.001
Jesse Davis, Mark Goadrich, The relationship between Precision-Recall and ROC curves Proceedings of the 23rd international conference on Machine learning - ICML '06. ,vol. 148, pp. 233- 240 ,(2006) , 10.1145/1143844.1143874
Li-Yeh Chuang, Chao-Hsuan Ke, Hsueh-Wei Chang, Cheng-Hong Yang, A two-stage feature selection method for gene expression data. Omics A Journal of Integrative Biology. ,vol. 13, pp. 127- 137 ,(2009) , 10.1089/OMI.2008.0083