Borane-Protected Cyanides as Surrogates of H-Bonded Cyanides in [FeFe]-Hydrogenase Active Site Models

作者: Brian C. Manor , Mark R. Ringenberg , Thomas B. Rauchfuss

DOI: 10.1021/IC500470Z

关键词: ProtonationChemistryLewis acids and basesHydrogenaseActive siteHydrogen bondBoraneMedicinal chemistryAdductInorganic chemistryBoranes

摘要: Triarylborane Lewis acids bind [Fe2(pdt)(CO)4(CN)2]2– [1]2– (pdt2– = 1,3-propanedithiolate) and [Fe2(adt)(CO)4(CN)2]2– [3]2– (adt2– 1,3-azadithiolate, HN(CH2S–)2) to give the 2:1 adducts [Fe2(xdt)(CO)4(CNBAr3)2]2–. Attempts prepare 1:1 [1(BAr3)]2– (Ar Ph, C6F5) were unsuccessful, but related obtained using bulky borane B(C6F4-o-C6F5)3 (BArF*3). By virtue of N-protection by borane, salts [Fe2(pdt)(CO)4(CNBAr3)2]2– sustain protonation hydrides that are stable (in contrast [H1]−). The [H1(BAr3)2]− 2.5–5 pKa units more acidic than parent [H1]−. [1(BAr3)2]2– oxidize quasi-reversibly around −0.3 V versus Fc0/+ in ca. −0.8 observed for [1]2–/– couple. A simplified synthesis [1]2–, [3]2–, [Fe2(pdt)(CO)5(CN)]− ([2]−) was developed, entailing reaction diiron hexacarbonyl complexes with KCN MeCN.

参考文章(46)
Aušra Jablonskytė, Joseph A. Wright, Shirley A. Fairhurst, Jamie N. T. Peck, Saad K. Ibrahim, Vasily S. Oganesyan, Christopher J. Pickett, Paramagnetic bridging hydrides of relevance to catalytic hydrogen evolution at metallosulfur centers. Journal of the American Chemical Society. ,vol. 133, pp. 18606- 18609 ,(2011) , 10.1021/JA2087536
Xuan Zhao, Irene P. Georgakaki, Matthew L. Miller, Jason C. Yarbrough, Marcetta Y. Darensbourg, H/D exchange reactions in dinuclear iron thiolates as activity assay models of Fe-H2ase. Journal of the American Chemical Society. ,vol. 123, pp. 9710- 9711 ,(2001) , 10.1021/JA0167046
Jennifer L. Nehring, D. Michael Heinekey, Dinuclear iron isonitrile complexes: models for the iron hydrogenase active site. Inorganic Chemistry. ,vol. 42, pp. 4288- 4292 ,(2003) , 10.1021/IC034334B
Ivari Kaljurand, Agnes Kütt, Lilli Sooväli, Toomas Rodima, Vahur Mäemets, Ivo Leito, Ilmar A. Koppel, Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: unification of different basicity scales. Journal of Organic Chemistry. ,vol. 70, pp. 1019- 1028 ,(2005) , 10.1021/JO048252W
Nicole M. Brunkan, Donna M. Brestensky, William D. Jones, Kinetics, Thermodynamics, and Effect of BPh3 on Competitive C−C and C−H Bond Activation Reactions in the Interconversion of Allyl Cyanide by [Ni(dippe)] Journal of the American Chemical Society. ,vol. 126, pp. 3627- 3641 ,(2004) , 10.1021/JA037002E
Maria E. Carroll, Bryan E. Barton, Thomas B. Rauchfuss, Patrick J. Carroll, Synthetic Models for the Active Site of the [FeFe]-Hydrogenase: Catalytic Proton Reduction and the Structure of the Doubly Protonated Intermediate Journal of the American Chemical Society. ,vol. 134, pp. 18843- 18852 ,(2012) , 10.1021/JA309216V
Erica J. Lyon, Irene P. Georgakaki, Joseph H. Reibenspies, Marcetta Y. Darensbourg, Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase Angewandte Chemie International Edition. ,vol. 38, pp. 3178- 3180 ,(1999) , 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4
G. Berggren, A. Adamska, C. Lambertz, T. R. Simmons, J. Esselborn, M. Atta, S. Gambarelli, J.-M. Mouesca, E. Reijerse, W. Lubitz, T. Happe, V. Artero, M. Fontecave, Biomimetic assembly and activation of [FeFe]-hydrogenases Nature. ,vol. 499, pp. 66- 69 ,(2013) , 10.1038/NATURE12239
Claudio Greco, Maurizio Bruschi, Jimmy Heimdal, Piercarlo Fantucci, Luca De Gioia, Ulf Ryde, Structural insights into the active-ready form of [FeFe]-hydrogenase and mechanistic details of its inhibition by carbon monoxide. Inorganic Chemistry. ,vol. 46, pp. 7256- 7258 ,(2007) , 10.1021/IC701051H
Cédric Tard, Christopher J. Pickett, Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chemical Reviews. ,vol. 109, pp. 2245- 2274 ,(2009) , 10.1021/CR800542Q