Stable discretization of the Boltzmann equation based on spherical harmonics, box integration, and a maximum entropy dissipation principle

作者: C. Jungemann , A. T. Pham , B. Meinerzhagen , C. Ringhofer , M. Bollhöfer

DOI: 10.1063/1.2212207

关键词:

摘要: … balance equations for the coefficients of the distribution … an expansion of considerably higher order than the usual first one. … of many orders of magnitude in the particle density and steep …

参考文章(46)
H. Kosina, M. Harrer, P. Vogl, S. Selberherr, A Monte Carlo Transport Model Based on Spherical Harmonics Expansion of the Valence Bands Springer, Vienna. pp. 396- 399 ,(1995) , 10.1007/978-3-7091-6619-2_96
Christoph Jungemann, Bernd Meinerzhagen, A Frequency Domain Spherical Harmonics Solver for the Langevin Boltzmann Equation AIP Conference Proceedings. ,vol. 780, pp. 777- 782 ,(2005) , 10.1063/1.2036864
Christoph Jungemann, Bernd Meinerzhagen, Hierarchical Device Simulation: The Monte-Carlo Perspective ,(2012)
Christian Ringhofer, Space-Time Discretization of Series Expansion Methods for the Boltzmann Transport Equation SIAM Journal on Numerical Analysis. ,vol. 38, pp. 442- 465 ,(2000) , 10.1137/S0036142998339921
Neil Goldsman, Chung-Kai Lin, Zhiyi Han, Chung-Kuang Huang, Advances in the Spherical Harmonic-Boltzmann-Wigner approach to device simulation Superlattices and Microstructures. ,vol. 27, pp. 159- 175 ,(2000) , 10.1006/SPMI.1999.0810
H.K. Gummel, A self-consistent iterative scheme for one-dimensional steady state transistor calculations IEEE Transactions on Electron Devices. ,vol. 11, pp. 455- 465 ,(1964) , 10.1109/T-ED.1964.15364