Functional Analysis of OMICs Data and Small Molecule Compounds in an Integrated “Knowledge-Based” Platform

作者: Yuri Nikolsky , Eugene Kirillov , Roman Zuev , Eugene Rakhmatulin , Tatiana Nikolskaya

DOI: 10.1007/978-1-60761-175-2_10

关键词:

摘要: Analysis of microarray, SNPs, proteomics, and other high-throughput (OMICs) data is challenging because its biological complexity high level technical noise. One way to deal with both problems perform analysis a high-fidelity annotated knowledge base protein interactions, pathways, functional ontologies. This has be structured in computer-readable format must include software tools for managing experimental data, analysis, reporting. Here we present MetaDiscovery, an integrated platform which being developed at GeneGo the past 8 years. On content side, MetaDiscovery encompasses comprehensive database interactions different types, network models 10 ontologies covering human, mouse, rat proteins. The analytical toolkit includes gene/protein list enrichment statistical "interactome" tool identification over- under-connected proteins set, module made up generation algorithms filters. suite also features MetaSearch, application combinatorial search content, as well Java-based called MapEditor drawing editing custom pathway maps. Applications potential biomarkers drug targets, hypothesis generation, effects novel small molecule compounds, clinical applications (analysis large cohorts patients translational personalized medicine).

参考文章(22)
LEV KLEBANOV, GALINA GLAZKO, PETER SALZMAN, ANDREI YAKOVLEV, YUANHUI XIAO, A multivariate extension of the gene set enrichment analysis. Journal of Bioinformatics and Computational Biology. ,vol. 5, pp. 1139- 1153 ,(2007) , 10.1142/S0219720007003041
L. D. Wood, D. W. Parsons, S. Jones, J. Lin, T. Sjoblom, R. J. Leary, D. Shen, S. M. Boca, T. Barber, J. Ptak, N. Silliman, S. Szabo, Z. Dezso, V. Ustyanksky, T. Nikolskaya, Y. Nikolsky, R. Karchin, P. A. Wilson, J. S. Kaminker, Z. Zhang, R. Croshaw, J. Willis, D. Dawson, M. Shipitsin, J. K. V. Willson, S. Sukumar, K. Polyak, B. H. Park, C. L. Pethiyagoda, P. V. K. Pant, D. G. Ballinger, A. B. Sparks, J. Hartigan, D. R. Smith, E. Suh, N. Papadopoulos, P. Buckhaults, S. D. Markowitz, G. Parmigiani, K. W. Kinzler, V. E. Velculescu, B. Vogelstein, Genomic landscapes of human breast and colorectal cancers Science. ,vol. 318, pp. 1108- 1113 ,(2008) , 10.1126/SCIENCE.1145720
Samuel Bader, Sebastian Kühner, Anne-Claude Gavin, Interaction networks for systems biology FEBS Letters. ,vol. 582, pp. 1220- 1224 ,(2008) , 10.1016/J.FEBSLET.2008.02.015
Oron Vanunu, Oded Magger, Eytan Ruppin, Tomer Shlomi, Roded Sharan, Associating Genes and Protein Complexes with Disease via Network Propagation PLoS Computational Biology. ,vol. 6, pp. e1000641- ,(2010) , 10.1371/JOURNAL.PCBI.1000641
Soon-Hyung Yook, Zoltán N. Oltvai, Albert-László Barabási, Functional and topological characterization of protein interaction networks Proteomics. ,vol. 4, pp. 928- 942 ,(2004) , 10.1002/PMIC.200300636
Igor Ulitsky, Akshay Krishnamurthy, Richard M. Karp, Ron Shamir, DEGAS: De Novo Discovery of Dysregulated Pathways in Human Diseases PLoS ONE. ,vol. 5, pp. e13367- ,(2010) , 10.1371/JOURNAL.PONE.0013367
Lukasz Salwinski, David Eisenberg, Computational methods of analysis of protein–protein interactions Current Opinion in Structural Biology. ,vol. 13, pp. 377- 382 ,(2003) , 10.1016/S0959-440X(03)00070-8
Daniela Nitsch, Joana P Gonçalves, Fabian Ojeda, Bart De Moor, Yves Moreau, None, Candidate gene prioritization by network analysis of differential expression using machine learning approaches BMC Bioinformatics. ,vol. 11, pp. 460- 460 ,(2010) , 10.1186/1471-2105-11-460
Patrick Kemmeren, Nynke L. van Berkum, Jaak Vilo, Theo Bijma, Rogier Donders, Alvis Brazma, Frank C.P. Holstege, Protein Interaction Verification and Functional Annotation by Integrated Analysis of Genome-Scale Data Molecular Cell. ,vol. 9, pp. 1133- 1143 ,(2002) , 10.1016/S1097-2765(02)00531-2
Jack Pollard, Atul J. Butte, Steve Hoberman, Monica Joshi, Josh Levy, Jacques Pappo, A computational model to define the molecular causes of type 2 diabetes mellitus. Diabetes Technology & Therapeutics. ,vol. 7, pp. 323- 336 ,(2005) , 10.1089/DIA.2005.7.323