State-of-the-art fusion-finder algorithms sensitivity and specificity.

作者: Federica Cavallo , Francesca Cordero , Susanna Donatelli , Raffaele A. Calogero , Matteo Carrara

DOI: 10.1155/2013/340620

关键词:

摘要: Background. Gene fusions arising from chromosomal translocations have been implicated in cancer. RNA-seq has the potential to discover such rearrangements generating functional proteins (chimera/fusion). Recently, many methods for chimeras detection published. However, specificity and sensitivity of those tools were not extensively investigated a comparative way. Results. We tested eight fusion-detection (FusionHunter, FusionMap, FusionFinder, MapSplice, deFuse, Bellerophontes, ChimeraScan, TopHat-fusion) detect fusion events using synthetic real datasets encompassing chimeras. The comparison analysis run only on data could generate misleading results since we found no counterpart dataset. Furthermore, most report very high number false positive In particular, sensitive tool, reports large positives that able significantly reduce by devising applying two filters remove supported junction-spanning reads or intronic regions. Conclusions. discordant obtained suggest may fully catch complexity experiment. Moreover, are still limited specificity; thus, there is space further improvement fusion-finder algorithms.

参考文章(16)
Matteo Carrara, Marco Beccuti, Federica Cavallo, Susanna Donatelli, Fulvio Lazzarato, Francesca Cordero, Raffaele A Calogero, State of art fusion-finder algorithms are suitable to detect transcription-induced chimeras in normal tissues? BMC Bioinformatics. ,vol. 14, pp. 1- 11 ,(2013) , 10.1186/1471-2105-14-S7-S2
Andrew McPherson, Fereydoun Hormozdiari, Abdalnasser Zayed, Ryan Giuliany, Gavin Ha, Mark G. F. Sun, Malachi Griffith, Alireza Heravi Moussavi, Janine Senz, Nataliya Melnyk, Marina Pacheco, Marco A. Marra, Martin Hirst, Torsten O. Nielsen, S. Cenk Sahinalp, David Huntsman, Sohrab P. Shah, deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data PLoS Computational Biology. ,vol. 7, pp. e1001138- ,(2011) , 10.1371/JOURNAL.PCBI.1001138
Richard W. Francis, Katherine Thompson-Wicking, Kim W. Carter, Denise Anderson, Ursula R. Kees, Alex H. Beesley, FusionFinder: a software tool to identify expressed gene fusion candidates from RNA-Seq data. PLOS ONE. ,vol. 7, ,(2012) , 10.1371/JOURNAL.PONE.0039987
Christopher A. Maher, Chandan Kumar-Sinha, Xuhong Cao, Shanker Kalyana-Sundaram, Bo Han, Xiaojun Jing, Lee Sam, Terrence Barrette, Nallasivam Palanisamy, Arul M. Chinnaiyan, Transcriptome Sequencing to Detect Gene Fusions in Cancer Nature. ,vol. 458, pp. 97- 101 ,(2009) , 10.1038/NATURE07638
Huanying Ge, Kejun Liu, Todd Juan, Fang Fang, Matthew Newman, Wolfgang Hoeck, FusionMap: detecting fusion genes from next-generation sequencing data at base-pair resolution Bioinformatics. ,vol. 27, pp. 1922- 1928 ,(2011) , 10.1093/BIOINFORMATICS/BTR310
Christian J. Stoeckert, John B. Hogenesch, Eric A. Pierce, Gregory R. Grant, Michael H. Farkas, Angel D. Pizarro, Nicholas F. Lahens, Jonathan Schug, Brian P. Brunk, Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM) Bioinformatics. ,vol. 27, pp. 2518- 2528 ,(2011) , 10.1093/BIOINFORMATICS/BTR427
Henrik Edgren, Astrid Murumagi, Sara Kangaspeska, Daniel Nicorici, Vesa Hongisto, Kristine Kleivi, Inga H Rye, Sandra Nyberg, Maija Wolf, Anne-Lise Borresen-Dale, Olli Kallioniemi, Identification of fusion genes in breast cancer by paired-end RNA-sequencing Genome Biology. ,vol. 12, pp. 1- 13 ,(2011) , 10.1186/GB-2011-12-1-R6
Yang Li, Jeremy Chien, David I. Smith, Jian Ma, FusionHunter: Identifying fusion transcripts in cancer using paired-end RNA-seq Bioinformatics. ,vol. 27, pp. 1708- 1710 ,(2011) , 10.1093/BIOINFORMATICS/BTR265
Matthew K. Iyer, Arul M. Chinnaiyan, Christopher A. Maher, ChimeraScan: A tool for identifying chimeric transcription in sequencing data Bioinformatics. ,vol. 27, pp. 2903- 2904 ,(2011) , 10.1093/BIOINFORMATICS/BTR467