Determination of cell membrane passive electrical properties using frequency domain dielectric spectroscopy technique. A new approach.

作者: F. Bordi , C. Cametti , A. Di Biasio

DOI: 10.1016/0005-2736(90)90154-G

关键词: DielectricSurface roughnessDielectric spectroscopyFractalFractal dimensionMaterials scienceConductivityComposite materialAnalytical chemistryElectrical resistivity and conductivityMembrane

摘要: Abstract To take into account the highly irregular surface morphology of cell membranes have analyzed impedance measurements biological suspensions in general terms using a fractal description roughness membrane. This analysis has been applied to human erythrocytes different solutions alkaline metal salts and lymphocytes, since these cells present irregularity. The passive electrical properties (dielectric constant conductivity) deduced from conductivity at radiowave frequencies discussed on basis dimension membrane surface.

参考文章(19)
K. Asami, Y. Takahashi, S. Takashima, Dielectric properties of mouse lymphocytes and erythrocytes Biochimica et Biophysica Acta. ,vol. 1010, pp. 49- 55 ,(1989) , 10.1016/0167-4889(89)90183-3
Christian U. Ludwig, Hansj�rg K. Forster, Marianne Troxler, Ruth Ludwig, Jean-Paul Obrecht, Functional characterization of T lymphocytes grown in semisolid agar Blut. ,vol. 47, pp. 185- 193 ,(1983) , 10.1007/BF00320837
L. Nyikos, T. Pajkossy, Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes Electrochimica Acta. ,vol. 30, pp. 1533- 1540 ,(1985) , 10.1016/0013-4686(85)80016-5
Koji Asami, Tetsuya Hanai, Naokazu Koizumi, Dielectric Approach to Suspensions of Ellipsoidal Particles Covered with a Shell in Particular Reference to Biological Cells Japanese Journal of Applied Physics. ,vol. 19, pp. 359- 365 ,(1980) , 10.1143/JJAP.19.359
Akihiko Irimajiri, Yukio Doida, Tetsuya Hanai, Akira Inouye, Passive electrical properties of cultured murine lymphoblast (L5178Y) with reference to its cytoplasmic membrane, nuclear envelope, and intracellular phases. The Journal of Membrane Biology. ,vol. 38, pp. 209- 232 ,(1978) , 10.1007/BF01871923
Benoit B. Mandelbrot, The Fractal Geometry of Nature ,(1982)
Tamás Pajkossy, Lajos Nyikos, Diffusion to fractal surfaces. II: Verification of theory Electrochimica Acta. ,vol. 34, pp. 171- 179 ,(1989) , 10.1016/0013-4686(89)87082-3