Effect of solution-treated temperature on hydrogen embrittlement of 17-4 PH stainless steel

作者: Sicong Shen , Xinfeng Li , Peng Zhang , Yanli Nan , Gongxian Yang

DOI: 10.1016/J.MSEA.2017.06.078

关键词:

摘要: Abstract The effect of solution-treated temperature on hydrogen embrittlement 17-4 PH stainless steel is investigated. Electrochemical charging and slow strain rate tensile tests were used to calculate the index susceptibility embrittlement. Fracture morphology microstructure observed by scanning electron microscope, optical microscope transmission microscope. results show that as increases from 890 °C 1090 °C, firstly decreases then increases. Based experimental results, it deemed determined result a combined prior austenite grain size copper precipitation. In addition, permeation test reveals hydrogen-induced cracking closely related diffusion behavior in alloys.

参考文章(35)
Carolina Hurtado-Noreña, Claudio Ariel Danón, María Inés Luppo, Pablo Bruzzoni, Evolution of Minor Phases in a 9PctCr Steel: Effect of Tempering Temperature and Relation with Hydrogen Trapping Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science. ,vol. 46, pp. 3972- 3988 ,(2015) , 10.1007/S11661-015-3045-7
Na Zan, Hua Ding, XiaoFei Guo, ZhengYou Tang, Wolfgang Bleck, Effects of grain size on hydrogen embrittlement in a Fe-22Mn-0.6C TWIP steel International Journal of Hydrogen Energy. ,vol. 40, pp. 10687- 10696 ,(2015) , 10.1016/J.IJHYDENE.2015.06.112
I. Scheider, W. Brocks, Simulation of cup cone fracture using the cohesive model Engineering Fracture Mechanics. ,vol. 70, pp. 1943- 1961 ,(2003) , 10.1016/S0013-7944(03)00133-4
Jun Wang, Hong Zou, Cong Li, Yanhua Peng, Shaoyu Qiu, Baoluo Shen, The microstructure evolution of type 17-4PH stainless steel during long-term aging at 350°C Nuclear Engineering and Design. ,vol. 236, pp. 2531- 2536 ,(2006) , 10.1016/J.NUCENGDES.2006.03.017
S.S.M. Tavares, F.J. da Silva, C. Scandian, G.F. da Silva, H.F.G. de Abreu, Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel Corrosion Science. ,vol. 52, pp. 3835- 3839 ,(2010) , 10.1016/J.CORSCI.2010.07.016
J. Besson, D. Steglich, W. Brocks, Modeling of crack growth in round bars and plane strain specimens International Journal of Solids and Structures. ,vol. 38, pp. 8259- 8284 ,(2001) , 10.1016/S0020-7683(01)00167-6
Jun Takahashi, Kazuto Kawakami, Yukiko Kobayashi, Toshimi Tarui, The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography Scripta Materialia. ,vol. 63, pp. 261- 264 ,(2010) , 10.1016/J.SCRIPTAMAT.2010.03.012
C.N. Hsiao, C.S. Chiou, J.R. Yang, Aging reactions in a 17-4 PH stainless steel Materials Chemistry and Physics. ,vol. 74, pp. 134- 142 ,(2002) , 10.1016/S0254-0584(01)00460-6
W.C. Chiang, C.C. Pu, B.L. Yu, J.K. Wu, Hydrogen susceptibility of 17-4 PH stainless steel Materials Letters. ,vol. 57, pp. 2485- 2488 ,(2003) , 10.1016/S0167-577X(02)01298-3
C.Fahir Arisoy, Gokhan Başman, M.Kelami Şeşen, Failure of a 17-4 PH stainless steel sailboat propeller shaft Engineering Failure Analysis. ,vol. 10, pp. 711- 717 ,(2003) , 10.1016/S1350-6307(03)00041-4